Coordinated economic and low-carbon operation strategy for a multi-energy greenhouse incorporating carbon capture and emissions trading

Jiahao Gou, Yang Mao, Xia Zhao, Zhenyu Wu
{"title":"Coordinated economic and low-carbon operation strategy for a multi-energy greenhouse incorporating carbon capture and emissions trading","authors":"Jiahao Gou,&nbsp;Yang Mao,&nbsp;Xia Zhao,&nbsp;Zhenyu Wu","doi":"10.1049/enc2.12127","DOIUrl":null,"url":null,"abstract":"<p>Greenhouses need to supply CO<sub>2</sub> to crops while simultaneously emitting CO<sub>2</sub>. To effectively harness the dual functionality of greenhouses as a carbon source and carbon consumer, this work incorporates carbon capture and emissions trading into a multi-energy greenhouse (MEG), which is equipped with various power and heat sources such as photovoltaic (PV) panels and a combined heat and power (CHP) unit and proposes that the captured CO<sub>2</sub> should be used to feed crops on-site. A low-carbon economic operation method is proposed for the coordinated environment-energy-carbon management of the MEG, and it considers various factors, including the power purchase/carbon supply costs, carbon emissions trading income, temperature/humidity/light intensity and CO<sub>2</sub> concentration requirements for crops, and operational constraints of various energy/environmental regulation equipment. The proposed method is validated using a tomato MEG. The results highlight the significant economic and environmental benefits of introducing carbon capture, emissions trading, and utilisation into MEGs.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"5 5","pages":"327-341"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12127","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouses need to supply CO2 to crops while simultaneously emitting CO2. To effectively harness the dual functionality of greenhouses as a carbon source and carbon consumer, this work incorporates carbon capture and emissions trading into a multi-energy greenhouse (MEG), which is equipped with various power and heat sources such as photovoltaic (PV) panels and a combined heat and power (CHP) unit and proposes that the captured CO2 should be used to feed crops on-site. A low-carbon economic operation method is proposed for the coordinated environment-energy-carbon management of the MEG, and it considers various factors, including the power purchase/carbon supply costs, carbon emissions trading income, temperature/humidity/light intensity and CO2 concentration requirements for crops, and operational constraints of various energy/environmental regulation equipment. The proposed method is validated using a tomato MEG. The results highlight the significant economic and environmental benefits of introducing carbon capture, emissions trading, and utilisation into MEGs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合碳捕获和排放交易的多能源温室的协调经济和低碳运营战略
温室需要在向作物提供二氧化碳的同时排放二氧化碳。为了有效利用温室作为碳源和碳消费者的双重功能,本研究将碳捕集和排放交易纳入多能源温室(MEG),该温室配备了光伏板和热电联产装置等多种动力和热源,并建议将捕集的二氧化碳用于就地哺育农作物。为实现 MEG 的环境-能源-碳协调管理,提出了一种低碳经济运行方法,该方法考虑了多种因素,包括电力采购/碳供应成本、碳排放交易收益、作物对温度/湿度/光照强度和二氧化碳浓度的要求,以及各种能源/环境调节设备的运行限制。利用番茄 MEG 验证了所提出的方法。结果表明,将碳捕集、排放交易和利用引入 MEG 可带来显著的经济和环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel online reinforcement learning-based linear quadratic regulator for three-level neutral-point clamped DC/AC inverter Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data Forecasting masked-load with invisible distributed energy resources based on transfer learning and Bayesian tuning Collaborative deployment of multiple reinforcement methods for network-loss reduction in distribution system with seasonal loads State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1