Moon Sup Yoon, Jae Min Lee, Min Jeong Jo, Su Jeong Kang, Myeong Kyun Yoo, So Yeon Park, Ji-Hyun Kang, Chan-Su Park, Chun-Woong Park, Jin-Seok Kim, A. Bernardos, Vicente Martí-Centelles, Ramón Martínez-Máñez, Dae Hwan Shin
{"title":"Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications","authors":"Moon Sup Yoon, Jae Min Lee, Min Jeong Jo, Su Jeong Kang, Myeong Kyun Yoo, So Yeon Park, Ji-Hyun Kang, Chan-Su Park, Chun-Woong Park, Jin-Seok Kim, A. Bernardos, Vicente Martí-Centelles, Ramón Martínez-Máñez, Dae Hwan Shin","doi":"10.36922/ijb.4273","DOIUrl":null,"url":null,"abstract":"Three-dimensional bioprinting technology has opened new possibilities for nanoparticle evaluation. This review discusses the latest research trends using various disease models created through 3D bioprinting for biological evaluation of nanoparticles. The focus is on tumor models, vessel models, and skin models. In tumor models, evaluations include antitumor effects, gene expression analysis, and cytotoxicity comparisons between 2D and 3D models. Vessel models assess restenosis prevention, ischemic repair, and vascular regeneration. Skin models investigate nanoparticle toxicity, drug release, and transdermal penetration. These studies highlight the versatility of 3D bioprinting in replicating complex biological environments, enabling more accurate nanoparticle testing. The use of various bioinks and cell types enhances the relevance of in vitro findings. The integration of nanoparticles with 3D bioprinted models shows significant potential in advancing therapeutic strategies, including cancer treatment, vascular repair, and drug delivery systems. Overall, this comprehensive review underscores the importance of 3D bioprinting as an innovative platform for nanoparticle research, bridging the gap between traditional 2D cell cultures and in vivo studies, and contributing to the development of nanomedicines and personalized medical treatments, providing selected examples to illustrate the concepts.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"18 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.4273","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional bioprinting technology has opened new possibilities for nanoparticle evaluation. This review discusses the latest research trends using various disease models created through 3D bioprinting for biological evaluation of nanoparticles. The focus is on tumor models, vessel models, and skin models. In tumor models, evaluations include antitumor effects, gene expression analysis, and cytotoxicity comparisons between 2D and 3D models. Vessel models assess restenosis prevention, ischemic repair, and vascular regeneration. Skin models investigate nanoparticle toxicity, drug release, and transdermal penetration. These studies highlight the versatility of 3D bioprinting in replicating complex biological environments, enabling more accurate nanoparticle testing. The use of various bioinks and cell types enhances the relevance of in vitro findings. The integration of nanoparticles with 3D bioprinted models shows significant potential in advancing therapeutic strategies, including cancer treatment, vascular repair, and drug delivery systems. Overall, this comprehensive review underscores the importance of 3D bioprinting as an innovative platform for nanoparticle research, bridging the gap between traditional 2D cell cultures and in vivo studies, and contributing to the development of nanomedicines and personalized medical treatments, providing selected examples to illustrate the concepts.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.