Meta-analysis of public RNA-sequencing data of drought and salt stresses in different phenotypes of Oryza sativa

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.06.605779
Mitsuo Shintani, H. Bono
{"title":"Meta-analysis of public RNA-sequencing data of drought and salt stresses in different phenotypes of Oryza sativa","authors":"Mitsuo Shintani, H. Bono","doi":"10.1101/2024.08.06.605779","DOIUrl":null,"url":null,"abstract":"Environmental stresses, such as drought and salt, adversely affect plant growth and crop productivity. While many studies have focused on established components of stress signaling pathways, research on unknown elements remains limited. In this study, we collected RNA sequencing (RNA-Seq) data from Oryza sativa subsp. indica and Oryza sativa subsp. japonica registered in public databases and conducted a meta-analysis integrating multiple studies. Focusing on two types of stress conditions (salt and drought), we aimed to identify novel stress-responsive genes in Oryza sativa by comparing RNA-Seq data from stress-resistant and stress-susceptible cultivars. We analyzed 105 paired datasets with different phenotypes under drought and salt stress conditions to identify genes with common expression changes across multiple studies. A meta-analysis identified 10 genes specifically upregulated in resistant cultivars and 12 specifically upregulated in susceptible cultivars under both drought and salt stress conditions. Furthermore, by comparing previously identified stress-responsive genes in Arabidopsis thaliana, we explored genes potentially involved in stress response mechanisms that are conserved across plant species. The genes identified in this data-driven study that potentially determine plant stress resistance or susceptibility phenotypes may serve as research targets for elucidating novel plant stress mechanisms and candidates for genome editing.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.605779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental stresses, such as drought and salt, adversely affect plant growth and crop productivity. While many studies have focused on established components of stress signaling pathways, research on unknown elements remains limited. In this study, we collected RNA sequencing (RNA-Seq) data from Oryza sativa subsp. indica and Oryza sativa subsp. japonica registered in public databases and conducted a meta-analysis integrating multiple studies. Focusing on two types of stress conditions (salt and drought), we aimed to identify novel stress-responsive genes in Oryza sativa by comparing RNA-Seq data from stress-resistant and stress-susceptible cultivars. We analyzed 105 paired datasets with different phenotypes under drought and salt stress conditions to identify genes with common expression changes across multiple studies. A meta-analysis identified 10 genes specifically upregulated in resistant cultivars and 12 specifically upregulated in susceptible cultivars under both drought and salt stress conditions. Furthermore, by comparing previously identified stress-responsive genes in Arabidopsis thaliana, we explored genes potentially involved in stress response mechanisms that are conserved across plant species. The genes identified in this data-driven study that potentially determine plant stress resistance or susceptibility phenotypes may serve as research targets for elucidating novel plant stress mechanisms and candidates for genome editing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对旱灾和盐胁迫下不同表型稻米的公开 RNA 序列数据进行元分析
干旱和盐分等环境胁迫会对植物生长和作物产量产生不利影响。虽然许多研究都集中于胁迫信号通路的既定成分,但对未知成分的研究仍然有限。在本研究中,我们收集了公共数据库中登记的籼稻和粳稻的 RNA 测序(RNA-Seq)数据,并对多项研究进行了荟萃分析。我们以两种胁迫条件(盐胁迫和旱胁迫)为重点,旨在通过比较抗胁迫和易受胁迫栽培品种的 RNA-Seq 数据,鉴定出新的旱金莲胁迫响应基因。我们分析了 105 个在干旱和盐胁迫条件下具有不同表型的配对数据集,以确定在多项研究中具有共同表达变化的基因。荟萃分析发现,在干旱和盐胁迫条件下,抗逆栽培品种中有 10 个基因特异性上调,易感栽培品种中有 12 个基因特异性上调。此外,通过比较之前在拟南芥中发现的胁迫响应基因,我们探索了可能参与植物物种间保守的胁迫响应机制的基因。在这项数据驱动的研究中发现的可能决定植物抗逆性或易感性表型的基因可作为阐明新型植物抗逆机制的研究目标和基因组编辑的候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability of cross-sensory input to primary somatosensory cortex across experience Genomic re-sequencing reveals mutational divergence across genetically engineered strains of model archaea A principled approach to community detection in interareal cortical networks A minimal mathematical model for polarity establishment and centralsplindlin-independent cytokinesis PTEN neddylation aggravates CDK4/6 inhibitor resistance in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1