Moataz Abdelaal, Fabian Kannenberg, Antoine Lhuillier, Marcel Hlawatsch, Achim Menges, Daniel Weiskopf
{"title":"STEP: Sequence of time-aligned edge plots","authors":"Moataz Abdelaal, Fabian Kannenberg, Antoine Lhuillier, Marcel Hlawatsch, Achim Menges, Daniel Weiskopf","doi":"10.1177/14738716241265111","DOIUrl":null,"url":null,"abstract":"We present sequence of time-aligned edge plots (STEP): a sequence- and edge-scalable visualization of dynamic networks and, more broadly, graph ensembles. We construct the graph sequence by ordering the individual graphs based on specific criteria, such as time for dynamic networks. To achieve scalability with respect to long sequences, we partition the sequence into equal-sized subsequences. Each subsequence is represented by a horizontal axis placed between two vertical axes. The horizontal axis depicts the order within the subsequence, while the two vertical axes depict the source and destination vertices. Edges within each subsequence are depicted as segmented lines extending from the source vertices on the left to the destination vertices on the right throughout the entire subsequence, and only the segments corresponding to the sequence members where the edges occur are drawn. By partitioning the sequence, STEP provides an overview of the graphs’ structural changes and avoids aspect ratio distortion. We showcase the utility of STEP for two realistic datasets. Additionally, we evaluate our approach by qualitatively comparing it against three state-of-the-art techniques using synthetic graphs with varying complexities. Furthermore, we evaluate the generalizability of STEP by applying it to a graph ensemble dataset from the architecture domain.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716241265111","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present sequence of time-aligned edge plots (STEP): a sequence- and edge-scalable visualization of dynamic networks and, more broadly, graph ensembles. We construct the graph sequence by ordering the individual graphs based on specific criteria, such as time for dynamic networks. To achieve scalability with respect to long sequences, we partition the sequence into equal-sized subsequences. Each subsequence is represented by a horizontal axis placed between two vertical axes. The horizontal axis depicts the order within the subsequence, while the two vertical axes depict the source and destination vertices. Edges within each subsequence are depicted as segmented lines extending from the source vertices on the left to the destination vertices on the right throughout the entire subsequence, and only the segments corresponding to the sequence members where the edges occur are drawn. By partitioning the sequence, STEP provides an overview of the graphs’ structural changes and avoids aspect ratio distortion. We showcase the utility of STEP for two realistic datasets. Additionally, we evaluate our approach by qualitatively comparing it against three state-of-the-art techniques using synthetic graphs with varying complexities. Furthermore, we evaluate the generalizability of STEP by applying it to a graph ensemble dataset from the architecture domain.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).