Ines Othman, M. Bisseux, Amna Helmi, Rawand Hamdi, Imen Nahdi, Ichrak Slama, Maha Mastouri, Jean Luc Bailly, Mahjoub Aouni
{"title":"Tracking SARS-CoV-2 and its variants in wastewater in Tunisia","authors":"Ines Othman, M. Bisseux, Amna Helmi, Rawand Hamdi, Imen Nahdi, Ichrak Slama, Maha Mastouri, Jean Luc Bailly, Mahjoub Aouni","doi":"10.2166/wh.2024.377","DOIUrl":null,"url":null,"abstract":"\n \n Wastewater-based genomic surveillance can improve community prevalence estimates and identify emerging variants of pathogens. Wastewater influents and treated effluents from six wastewater treatment plants (WWTPs) in Tunisia were analyzed between December 2021 and July 2022. Wastewater samples were analyzed with reverse transcription solid digital PCR (RT-sdPCR) and whole-genome sequencing to determine the amount of SARS-CoV-2 RNA and assign SARS-CoV-2 lineages. The virus variants detected in wastewater samples were compared with COVID-19 prevalence data. The quantitative results in wastewater influents revealed that viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases and show an increase before the increment of clinically diagnosed new COVID-19 cases between April and July 2022. Delta and Omicron variants were identified in the Tunisian wastewater. Interestingly, the presence of variant BA.5 was detected in samples prior to its inclusion as a variant of concern (VOC) by the Tunisian National Health Authorities. SARS-CoV-2 was detected in wastewater effluents, indicating that the wastewater treatment techniques used in the majority of Tunisian WWTPs are inefficient in removing the virus traces. This study reports the first identification of SARS-CoV-2 VOCs in Tunisian wastewater samples.","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2024.377","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater-based genomic surveillance can improve community prevalence estimates and identify emerging variants of pathogens. Wastewater influents and treated effluents from six wastewater treatment plants (WWTPs) in Tunisia were analyzed between December 2021 and July 2022. Wastewater samples were analyzed with reverse transcription solid digital PCR (RT-sdPCR) and whole-genome sequencing to determine the amount of SARS-CoV-2 RNA and assign SARS-CoV-2 lineages. The virus variants detected in wastewater samples were compared with COVID-19 prevalence data. The quantitative results in wastewater influents revealed that viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases and show an increase before the increment of clinically diagnosed new COVID-19 cases between April and July 2022. Delta and Omicron variants were identified in the Tunisian wastewater. Interestingly, the presence of variant BA.5 was detected in samples prior to its inclusion as a variant of concern (VOC) by the Tunisian National Health Authorities. SARS-CoV-2 was detected in wastewater effluents, indicating that the wastewater treatment techniques used in the majority of Tunisian WWTPs are inefficient in removing the virus traces. This study reports the first identification of SARS-CoV-2 VOCs in Tunisian wastewater samples.
期刊介绍:
Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.