The impact of double‐diffusive convection on electroosmotic peristaltic transport of magnetized Casson nanofluid in a porous asymmetric channel

Bathmanaban Paandurangan, Siva Errappa Parthasarathy, Dharmendra Tripathi, O. A. Bég
{"title":"The impact of double‐diffusive convection on electroosmotic peristaltic transport of magnetized Casson nanofluid in a porous asymmetric channel","authors":"Bathmanaban Paandurangan, Siva Errappa Parthasarathy, Dharmendra Tripathi, O. A. Bég","doi":"10.1002/zamm.202300771","DOIUrl":null,"url":null,"abstract":"The primary objective of the present article is to investigate the heat and mass transfer in mixed convection peristaltic flow of Casson nanofluid through an asymmetric permeable channel filled with a porous medium in the presence of electroosmosis. Magnetohydrodynamics and radiative heat transfer are also considered. The study is motivated by industrial micro‐pumping systems utilizing multi‐functional nanomaterials. Researchers have investigated the distinct temperature and rheological properties of Casson nanofluids. Solutal molecular diffusion and nanoparticle diffusion are both examined. Mixing nanoparticles with Casson fluid alters its flow characteristics and heat transmission, amalgamating different properties that are useful in a wide range of industrial and scientific applications. Buongiorno's two‐component nanoscale model is deployed for simulating nanofluid transport, and the Rosseland diffusion flux is utilized for optically thick electromagnetic liquids. Heat generation or absorption and cross‐diffusion (Soret and Dufour) effects are also incorporated in the model. An efficient analytical approach known as the long wavelength‐low Reynolds number lubrication approximation (LWL‐LRN) is utilized to solve the non‐dimensional boundary value problem. Validation of the solutions with previous studies is included. Graphs are presented using MATLAB 2022b to visualize the influence of key parameters including permeability, magnetic field, thermal radiation, Grashof number, Brownian motion, thermophoresis, electrical field and Prandtl number on transport characteristics (velocity, temperature, concentration), and trapping phenomena associated with peristaltic propulsion. As thermophoresis and Brownian parameters are intensified, there is a strong response in nanoparticles which induces axial acceleration, as observed at locations y = 0.15, where u = 0.191, and y = 0.33, where u is elevated to 0.14. An increase in radiation parameter () results in a depletion in axial velocity magnitudes along the left half of the wall and also modifies velocity distribution in the right section of the microchannel. An increase in the thermal radiation parameter (Rn) and heat absorption (sink) is found to suppress temperatures. Increasing heat generation, thermal Grashof number (Gr), and solutal Grashof number (Gc) decelerate axial flow in the left half space but accelerate flow in the right half space of the micro‐channel. Increasing radiation parameters and thermal Biot number boost temperatures when heat sink is present but reduce them when heat source (generation) is present. Increasing radiation parameter boosts nanoparticle volume fraction (concentration) whereas an elevation in heat generation and thermal Biot number both induce the opposite effect. Increasing the magnetic field damps the flow and reduces the number of boluses present. However, bolus volume increases with greater thermal Grashof Number , Darcy (permeability) number , and Helmholtz‐Smoluchowski velocity , that is, stronger axial electrical field.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of the present article is to investigate the heat and mass transfer in mixed convection peristaltic flow of Casson nanofluid through an asymmetric permeable channel filled with a porous medium in the presence of electroosmosis. Magnetohydrodynamics and radiative heat transfer are also considered. The study is motivated by industrial micro‐pumping systems utilizing multi‐functional nanomaterials. Researchers have investigated the distinct temperature and rheological properties of Casson nanofluids. Solutal molecular diffusion and nanoparticle diffusion are both examined. Mixing nanoparticles with Casson fluid alters its flow characteristics and heat transmission, amalgamating different properties that are useful in a wide range of industrial and scientific applications. Buongiorno's two‐component nanoscale model is deployed for simulating nanofluid transport, and the Rosseland diffusion flux is utilized for optically thick electromagnetic liquids. Heat generation or absorption and cross‐diffusion (Soret and Dufour) effects are also incorporated in the model. An efficient analytical approach known as the long wavelength‐low Reynolds number lubrication approximation (LWL‐LRN) is utilized to solve the non‐dimensional boundary value problem. Validation of the solutions with previous studies is included. Graphs are presented using MATLAB 2022b to visualize the influence of key parameters including permeability, magnetic field, thermal radiation, Grashof number, Brownian motion, thermophoresis, electrical field and Prandtl number on transport characteristics (velocity, temperature, concentration), and trapping phenomena associated with peristaltic propulsion. As thermophoresis and Brownian parameters are intensified, there is a strong response in nanoparticles which induces axial acceleration, as observed at locations y = 0.15, where u = 0.191, and y = 0.33, where u is elevated to 0.14. An increase in radiation parameter () results in a depletion in axial velocity magnitudes along the left half of the wall and also modifies velocity distribution in the right section of the microchannel. An increase in the thermal radiation parameter (Rn) and heat absorption (sink) is found to suppress temperatures. Increasing heat generation, thermal Grashof number (Gr), and solutal Grashof number (Gc) decelerate axial flow in the left half space but accelerate flow in the right half space of the micro‐channel. Increasing radiation parameters and thermal Biot number boost temperatures when heat sink is present but reduce them when heat source (generation) is present. Increasing radiation parameter boosts nanoparticle volume fraction (concentration) whereas an elevation in heat generation and thermal Biot number both induce the opposite effect. Increasing the magnetic field damps the flow and reduces the number of boluses present. However, bolus volume increases with greater thermal Grashof Number , Darcy (permeability) number , and Helmholtz‐Smoluchowski velocity , that is, stronger axial electrical field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔非对称通道中磁化卡松纳米流体的双扩散对流对电渗透蠕动传输的影响
本文的主要目的是研究在电渗存在的情况下,卡松纳米流体通过充满多孔介质的非对称渗透通道的混合对流蠕动流中的传热和传质问题。同时还考虑了磁流体力学和辐射传热。这项研究的动机是利用多功能纳米材料的工业微泵系统。研究人员已经研究了卡松纳米流体的独特温度和流变特性。对溶液分子扩散和纳米粒子扩散进行了研究。纳米粒子与卡松流体的混合改变了其流动特性和热传导,融合了不同的特性,这些特性在广泛的工业和科学应用中非常有用。Buongiorno 的双组分纳米尺度模型用于模拟纳米流体的传输,而 Rosseland 扩散通量则用于光厚电磁液体。该模型还纳入了热量产生或吸收以及交叉扩散(索雷特和杜福尔)效应。利用被称为长波长-低雷诺数润滑近似(LWL-LRN)的高效分析方法来解决非维度边界值问题。此外,还将根据之前的研究对解决方案进行验证。使用 MATLAB 2022b 绘制了图表,以直观显示关键参数的影响,包括渗透率、磁场、热辐射、格拉肖夫数、布朗运动、热泳、电场和普朗特尔数对传输特性(速度、温度、浓度)的影响,以及与蠕动推进相关的捕获现象。随着热泳和布朗运动参数的增加,纳米粒子会产生强烈的反应,从而引起轴向加速,如在 y = 0.15(u = 0.191)和 y = 0.33(u 升至 0.14)处观察到的情况。辐射参数()的增加会导致沿左半壁的轴向速度减弱,同时也会改变微通道右段的速度分布。热辐射参数(Rn)和吸热(sink)的增加会抑制温度。增加发热量、热格拉肖夫数(Gr)和溶质格拉肖夫数(Gc)会减缓微通道左半部空间的轴向流动,但会加速微通道右半部空间的流动。增加辐射参数和热毕奥特数会在有散热器时提高温度,但在有热源(发电)时则会降低温度。增加辐射参数会提高纳米粒子的体积分数(浓度),而增加发热量和热毕奥特数则会产生相反的效果。增加磁场会抑制气流并减少栓子的数量。然而,随着热格拉肖夫数、达西(渗透)数和亥姆霍兹-斯莫卢霍夫斯基速度(即更强的轴向电场)的增加,颗粒体积也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of entropy generation and MHD thermo‐solutal convection flow of Ellis nanofluid through inclined microchannel A generalized Allen–Cahn model with mass source and its Cahn–Hilliard limit Comparative characterization of heat transfer and entropy generation of micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade binary nanofluids in PTSCs settings Numerical study of third‐grade nanofluid flow with motile microorganisms under the mixed convection regime over a stretching cylinder An in‐depth comparative analysis of entropy generation and heat transfer in micropolar‐Williamson, micropolar‐Maxwell, and micropolar‐Casson binary nanofluids within PTSCs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1