Harnessing Generative Modeling and Autoencoders Against Adversarial Threats in Autonomous Vehicles

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-08-05 DOI:10.1109/TCE.2024.3437419
Kathiroli Raja;Sudhakar Theerthagiri;Sriram Venkataraman Swaminathan;Sivassri Suresh;Gunasekaran Raja
{"title":"Harnessing Generative Modeling and Autoencoders Against Adversarial Threats in Autonomous Vehicles","authors":"Kathiroli Raja;Sudhakar Theerthagiri;Sriram Venkataraman Swaminathan;Sivassri Suresh;Gunasekaran Raja","doi":"10.1109/TCE.2024.3437419","DOIUrl":null,"url":null,"abstract":"The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions. However, the DL and ML models are susceptible to various attacks, like adversarial attacks, leading to miscalculated decisions. Existing solutions defend against adversarial attacks proactively or reactively. To improve the defense methodologies, we propose a novel hybrid Defense Strategy for Autonomous Vehicles against Adversarial Attacks (DSAA), incorporating both reactive and proactive measures with adversarial training with Neural Structured Learning (NSL) and a generative denoising autoencoder to remove the adversarial perturbations. In addition, a randomized channel that adds calculated noise to the model parameter is utilized to encounter white-box and black-box attacks. The experimental results demonstrate that the proposed DSAA effectively mitigates proactive and reactive attacks compared to other existing defense methods, showcasing its performance by achieving an average accuracy of 80.15%.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 3","pages":"6216-6223"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623540/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions. However, the DL and ML models are susceptible to various attacks, like adversarial attacks, leading to miscalculated decisions. Existing solutions defend against adversarial attacks proactively or reactively. To improve the defense methodologies, we propose a novel hybrid Defense Strategy for Autonomous Vehicles against Adversarial Attacks (DSAA), incorporating both reactive and proactive measures with adversarial training with Neural Structured Learning (NSL) and a generative denoising autoencoder to remove the adversarial perturbations. In addition, a randomized channel that adds calculated noise to the model parameter is utilized to encounter white-box and black-box attacks. The experimental results demonstrate that the proposed DSAA effectively mitigates proactive and reactive attacks compared to other existing defense methods, showcasing its performance by achieving an average accuracy of 80.15%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生成模型和自动编码器应对自动驾驶汽车中的对抗性威胁
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
Table of Contents Guest Editorial of the Special Section on Consumer Electronics in the Era of the Internet of Everything (IoE) and Massive Data IEEE Consumer Technology Society Officers and Committee Chairs IEEE Consumer Technology Society Board of Governors Guest Editorial of the Special Section on Multimodal Data-Driven Decision-Making for Next-Generation Consumer Electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1