Reconciling Early and Late Time Tensions with Reinforcement Learning

Mohit K. Sharma, M. Sami
{"title":"Reconciling Early and Late Time Tensions with Reinforcement Learning","authors":"Mohit K. Sharma, M. Sami","doi":"arxiv-2408.04204","DOIUrl":null,"url":null,"abstract":"We study the possibility of accommodating both early and late-time tensions\nusing a novel reinforcement learning technique. By applying this technique, we\naim to optimize the evolution of the Hubble parameter from recombination to the\npresent epoch, addressing both tensions simultaneously. To maximize the\ngoodness of fit, our learning technique achieves a fit that surpasses even the\n$\\Lambda$CDM model. Our results demonstrate a tendency to weaken both early and\nlate time tensions in a completely model-independent manner.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the $\Lambda$CDM model. Our results demonstrate a tendency to weaken both early and late time tensions in a completely model-independent manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用强化学习调和早晚时间的紧张关系
我们研究了利用新颖的强化学习技术兼顾早期和晚期紧张关系的可能性。通过应用这种技术,我们试图优化哈勃参数从重组到当前纪元的演化,同时解决两种张力问题。为了最大限度地提高拟合度,我们的学习技术达到了甚至超过$\Lambda$CDM模型的拟合度。我们的结果表明,早期和晚期时间张力都有减弱的趋势,而且完全与模型无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Matter Geometry Coupling and Casimir Wormhole Geometry Multi-field TDiff theories for cosmology Field Sources for $f(R,R_{μν})$ Black-Bounce Solutions: The Case of K-Gravity Magnetic Reconnection and Energy Extraction from a Konoplya-Zhidenko rotating non-Kerr black hole Holographic Einstein Rings of AdS Black Holes in Horndeski Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1