IL-33 released during challenge phase regulates allergic asthma in an age-dependent way

IF 21.8 1区 医学 Q1 IMMUNOLOGY Cellular &Molecular Immunology Pub Date : 2024-08-12 DOI:10.1038/s41423-024-01205-2
Hangyu Liu, Min Wu, Qiangqiang Wang, Liuchuang Gao, Han Jiang, Ketai Shi, Yawen Lin, Junyi Zhou, Ju Huang, Shen Qu, Yuwei Zhang, Fang Zheng, Yafei Huang, Junyan Han
{"title":"IL-33 released during challenge phase regulates allergic asthma in an age-dependent way","authors":"Hangyu Liu, Min Wu, Qiangqiang Wang, Liuchuang Gao, Han Jiang, Ketai Shi, Yawen Lin, Junyi Zhou, Ju Huang, Shen Qu, Yuwei Zhang, Fang Zheng, Yafei Huang, Junyan Han","doi":"10.1038/s41423-024-01205-2","DOIUrl":null,"url":null,"abstract":"<p>Epithelial-derived cytokines, especially type 2 alarmins (TSLP, IL-25, and IL-33), have emerged as critical mediators of type 2 inflammation. IL-33 attracts more interest for its strong association with allergic asthma, especially in childhood asthma. However, the age-dependent role of IL-33 to the development of allergic asthma remains elusive. Here, using OVA-induced allergic asthma model in neonatal and adult mice, we report that IL-33 is the most important alarmin in neonatal lung both at steady state or inflammation. The deficiency of IL-33/ST2 abrogated the development of allergic asthma only in neonates, whereas in adults the effect was limited. Interestingly, the deficiency of IL-33/ST2 equally dampened the ILC2 responses in both neonatal and adult models. However, the effect of IL-33/ST2 deficiency on Th2 responses is age-dependent, which is only blocked in neonates. Furthermore, IL-33/ST2 signaling is dispensable for OVA sensitization. Following OVA challenge in adults, the deficiency of IL-33/ST2 results in compensational more TSLP, which in turn recruits and activates lung DCs and boosts Th2 responses. The enriched γδ T17 cells in IL-33/ST2 deficient neonatal lung suppress the expression of type 2 alarmins, CCL20 and GM-CSF via IL-17A, thus might confer the inhibition of allergic asthma. Finally, on the basis of IL-33 deficiency, the additive protective effects of TSLP blocking is much more pronounced than IL-25 blocking in adults. Our studies demonstrate that the role of IL-33 for ILC2 and Th2 responses varies among ages in OVA models and indicate that the factor of age should be considered for intervention of asthma.</p>","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":null,"pages":null},"PeriodicalIF":21.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41423-024-01205-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial-derived cytokines, especially type 2 alarmins (TSLP, IL-25, and IL-33), have emerged as critical mediators of type 2 inflammation. IL-33 attracts more interest for its strong association with allergic asthma, especially in childhood asthma. However, the age-dependent role of IL-33 to the development of allergic asthma remains elusive. Here, using OVA-induced allergic asthma model in neonatal and adult mice, we report that IL-33 is the most important alarmin in neonatal lung both at steady state or inflammation. The deficiency of IL-33/ST2 abrogated the development of allergic asthma only in neonates, whereas in adults the effect was limited. Interestingly, the deficiency of IL-33/ST2 equally dampened the ILC2 responses in both neonatal and adult models. However, the effect of IL-33/ST2 deficiency on Th2 responses is age-dependent, which is only blocked in neonates. Furthermore, IL-33/ST2 signaling is dispensable for OVA sensitization. Following OVA challenge in adults, the deficiency of IL-33/ST2 results in compensational more TSLP, which in turn recruits and activates lung DCs and boosts Th2 responses. The enriched γδ T17 cells in IL-33/ST2 deficient neonatal lung suppress the expression of type 2 alarmins, CCL20 and GM-CSF via IL-17A, thus might confer the inhibition of allergic asthma. Finally, on the basis of IL-33 deficiency, the additive protective effects of TSLP blocking is much more pronounced than IL-25 blocking in adults. Our studies demonstrate that the role of IL-33 for ILC2 and Th2 responses varies among ages in OVA models and indicate that the factor of age should be considered for intervention of asthma.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挑战阶段释放的 IL-33 对过敏性哮喘的调节与年龄有关
上皮源性细胞因子,尤其是 2 型抗炎蛋白(TSLP、IL-25 和 IL-33),已成为 2 型炎症的关键介质。IL-33 因其与过敏性哮喘,尤其是儿童哮喘的密切关系而更受关注。然而,IL-33 在过敏性哮喘发病过程中的作用与年龄有关,这一点仍然难以捉摸。在此,我们利用 OVA 诱导的新生小鼠和成年小鼠过敏性哮喘模型,报告了 IL-33 是新生小鼠肺部稳态或炎症时最重要的警报蛋白。IL-33/ST2 的缺乏仅在新生小鼠中抑制过敏性哮喘的发生,而对成年小鼠的影响有限。有趣的是,在新生儿和成人模型中,IL-33/ST2 的缺乏同样抑制了 ILC2 的反应。然而,IL-33/ST2 缺乏对 Th2 反应的影响是年龄依赖性的,只有在新生儿中才会被阻断。此外,IL-33/ST2 信号传导对于 OVA 致敏是不可或缺的。成人受到 OVA 挑战后,IL-33/ST2 的缺乏会导致 TSLP 的代偿性增加,进而招募和激活肺直流细胞并增强 Th2 反应。IL-33/ST2 缺乏的新生儿肺中富集的 γδ T17 细胞通过 IL-17A 抑制了 2 型 Alarmins、CCL20 和 GM-CSF 的表达,因此可能会抑制过敏性哮喘的发生。最后,在 IL-33 缺乏的基础上,成人 TSLP 阻断的附加保护作用比 IL-25 阻断更为明显。我们的研究表明,在 OVA 模型中,IL-33 对 ILC2 和 Th2 反应的作用因年龄而异,这表明在干预哮喘时应考虑年龄因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
31.20
自引率
1.20%
发文量
903
审稿时长
1 months
期刊介绍: Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.
期刊最新文献
Rack1 regulates B-cell development and function by binding to and stabilizing the transcription factor Pax5 RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. The emerging roles of B cells in cancer development. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1