{"title":"Monitoring and disaster prevention of high and steep sandstone slopes along highways under construction","authors":"Xianlin Liu, Xilin Lü, Yu Shao, Chuan Chen, Guangbin Liu, Yishan Li, Mingzhi Li, Xinyu Wu, Youdong Chen","doi":"10.3389/feart.2024.1444592","DOIUrl":null,"url":null,"abstract":"High and steep sandstone slopes along highway line are at high risk of disasters such as landslides, cracking of support structures, and so on. The monitoring, early warning, and emergency response of such slope disaster face enormous challenges, especially during the rainy season. In this paper, intelligent monitoring, early warning and forecasting system were carried out for the high steep sandstone slope with a transmission line tower at the slope crest along the highway under construction in Guangxi, China. The automatic monitoring data, emergency rescue program and rescue effect were analyzed, and emergency rescue measures for high steep slope protection were taken. The research results show that timely access to disaster warning information can effectively support the analysis of disaster causes and the evaluation of disposal programs. Deep-hole monitoring of deformation characteristics can determine the stable state of slopes, and the tangent angle warning criterion can be used for early warning and prediction of high steep slope landslides. By analyzing the location of the sliding surface and taking timely emergency disposal measures such as layered counterpressure method and micropipes, the landslide activities can be effectively controlled to prevent further acceleration of slope collapse. This study can provide an important reference for the monitoring, early warning, forecasting and emergency rescue of sandstone slopes along highways under construction.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"56 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1444592","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High and steep sandstone slopes along highway line are at high risk of disasters such as landslides, cracking of support structures, and so on. The monitoring, early warning, and emergency response of such slope disaster face enormous challenges, especially during the rainy season. In this paper, intelligent monitoring, early warning and forecasting system were carried out for the high steep sandstone slope with a transmission line tower at the slope crest along the highway under construction in Guangxi, China. The automatic monitoring data, emergency rescue program and rescue effect were analyzed, and emergency rescue measures for high steep slope protection were taken. The research results show that timely access to disaster warning information can effectively support the analysis of disaster causes and the evaluation of disposal programs. Deep-hole monitoring of deformation characteristics can determine the stable state of slopes, and the tangent angle warning criterion can be used for early warning and prediction of high steep slope landslides. By analyzing the location of the sliding surface and taking timely emergency disposal measures such as layered counterpressure method and micropipes, the landslide activities can be effectively controlled to prevent further acceleration of slope collapse. This study can provide an important reference for the monitoring, early warning, forecasting and emergency rescue of sandstone slopes along highways under construction.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.