Investigation on the lean-combustion characteristics of non-uniform orifice pre-chamber spark plug in low engine speed working conditions compared with high energy spark ignition

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Engine Research Pub Date : 2024-08-06 DOI:10.1177/14680874241261104
Yuanzhi Tang, Diming Lou, Liang Fang, Xijiang Wu, Zhiyu Wang, Yunhua Zhang
{"title":"Investigation on the lean-combustion characteristics of non-uniform orifice pre-chamber spark plug in low engine speed working conditions compared with high energy spark ignition","authors":"Yuanzhi Tang, Diming Lou, Liang Fang, Xijiang Wu, Zhiyu Wang, Yunhua Zhang","doi":"10.1177/14680874241261104","DOIUrl":null,"url":null,"abstract":"For a long time, pre-chamber jet ignition has been an effective method to achieve stable lean-combustion of the engine. However, due to the lack of an additional fuel injector, the passive pre-chamber easily leads to unstable combustion and even misfires during the engine’s low-speed working conditions. This study used simulation and optical single-cylinder engine visualization experiments to investigate the ignition and combustion performance of the pre-chamber spark plug (PCSP) ignition system and different orientations of the scavenging jet nozzle in the cylinder. The results indicate that the PCSP at low speed (1200 r/min) can improve the lean-combustion load performance by up to 6.7% compared with traditional high-energy spark ignition but cannot significantly improve the lean combustion limit and stability. In addition, under each λ condition, the scavenging jet nozzle face toward one of the intake valves (IV2) is most advantageous. The effect of lean combustion on reducing NO began to manifest after λ > 1.3 and achieved the best at 1.6. This kind of jet ignition pre-chamber provides a more stable ignition solution than high-energy spark ignition for low speed and medium/low load aspects.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"48 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241261104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a long time, pre-chamber jet ignition has been an effective method to achieve stable lean-combustion of the engine. However, due to the lack of an additional fuel injector, the passive pre-chamber easily leads to unstable combustion and even misfires during the engine’s low-speed working conditions. This study used simulation and optical single-cylinder engine visualization experiments to investigate the ignition and combustion performance of the pre-chamber spark plug (PCSP) ignition system and different orientations of the scavenging jet nozzle in the cylinder. The results indicate that the PCSP at low speed (1200 r/min) can improve the lean-combustion load performance by up to 6.7% compared with traditional high-energy spark ignition but cannot significantly improve the lean combustion limit and stability. In addition, under each λ condition, the scavenging jet nozzle face toward one of the intake valves (IV2) is most advantageous. The effect of lean combustion on reducing NO began to manifest after λ > 1.3 and achieved the best at 1.6. This kind of jet ignition pre-chamber provides a more stable ignition solution than high-energy spark ignition for low speed and medium/low load aspects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与高能量火花点火相比,非均匀孔径前腔火花塞在发动机低速工况下的贫燃特性研究
长期以来,预燃室喷射点火一直是实现发动机稳定稀薄燃烧的有效方法。然而,由于缺少额外的喷油器,被动式前置室在发动机低速工况下容易导致燃烧不稳定,甚至失火。本研究利用仿真和光学单缸发动机可视化实验,研究了前腔火花塞(PCSP)点火系统和气缸内不同方向的清扫喷嘴的点火和燃烧性能。结果表明,与传统的高能火花点火相比,低转速(1200 r/min)下的 PCSP 可将贫燃负荷性能提高 6.7%,但不能显著提高贫燃极限和稳定性。此外,在每个 λ 条件下,朝向其中一个进气门(IV2)的清扫射流喷嘴最为有利。稀薄燃烧减少 NO 的效果在 λ > 1.3 之后开始显现,并在 1.6 时达到最佳。与高能量火花点火相比,这种喷射点火前室为低速和中/低负荷提供了更稳定的点火方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
期刊最新文献
Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine. Transient NOx emission modeling of a hydrogen-diesel engine using hybrid machine learning methods An efficient product design tool for aftertreatment system Computational investigation of a methanol compression ignition engine assisted by a glow plug A consistent model of the initiation, early expansion, and possible extinction of a spark-ignited flame kernel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1