Explainable AI for Text Classification: Lessons from a Comprehensive Evaluation of Post Hoc Methods

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation Pub Date : 2024-08-06 DOI:10.1007/s12559-024-10325-w
Mirko Cesarini, Lorenzo Malandri, Filippo Pallucchini, Andrea Seveso, Frank Xing
{"title":"Explainable AI for Text Classification: Lessons from a Comprehensive Evaluation of Post Hoc Methods","authors":"Mirko Cesarini, Lorenzo Malandri, Filippo Pallucchini, Andrea Seveso, Frank Xing","doi":"10.1007/s12559-024-10325-w","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification. While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a comprehensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s pros and cons and select the most suitable one for their needs.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"71 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10325-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification. While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a comprehensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s pros and cons and select the most suitable one for their needs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于文本分类的可解释人工智能:后发方法综合评估的启示
本文论述了在评估用于文本分类的可解释人工智能(XAI)方法方面存在的显著差距。虽然现有框架侧重于评估推荐系统和可视化分析等领域的 XAI,但却缺少全面的评估。我们的研究根据解释范围和输出格式对最近的事后 XAI 方法进行了调查和分类。然后,我们进行了系统性评估,利用客观指标和用户研究相结合的方法,评估了这些方法在不同范围和输出粒度水平上的有效性。主要研究结果表明,基于特征的解释比基于规则的解释显示出更高的保真度。虽然全局解释被认为更令人满意、更值得信赖,但其实用性却不如局部解释。这些见解加深了人们对文本分类中的 XAI 的理解,并为开发有效的 XAI 系统提供了宝贵的指导,使用户能够评估每个解释器的优缺点,并根据自己的需求选择最合适的解释器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
期刊最新文献
A Joint Network for Low-Light Image Enhancement Based on Retinex Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection: A Case Study on Android Malware Probing Fundamental Visual Comprehend Capabilities on Vision Language Models via Visual Phrases from Structural Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1