Analysis of Graeco-Latin square designs in the presence of uncertain data

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Big Data Pub Date : 2024-08-07 DOI:10.1186/s40537-024-00970-1
Abdulrahman AlAita, Muhammad Aslam, Khaled Al Sultan, Muhammad Saleem
{"title":"Analysis of Graeco-Latin square designs in the presence of uncertain data","authors":"Abdulrahman AlAita, Muhammad Aslam, Khaled Al Sultan, Muhammad Saleem","doi":"10.1186/s40537-024-00970-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>This paper addresses the Graeco-Latin square design (GLSD) under neutrosophic statistics. In this work, we propose a novel approach for analyzing Graeco-Latin square designs using uncertain observations.</p><h3 data-test=\"abstract-sub-heading\">Method</h3><p>This approach involves the determination of a neutrosophic ANOVA and the determination of the neutrosophic hypotheses and decision rule.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The performance of the proposed design is evaluated using the numerical examples and simulation study.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Based on the results observed, it can be concluded that the GLSD under neutrosophic statistics performs better than the GLSD under classical statistics in the presence of uncertainty.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"2 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00970-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This paper addresses the Graeco-Latin square design (GLSD) under neutrosophic statistics. In this work, we propose a novel approach for analyzing Graeco-Latin square designs using uncertain observations.

Method

This approach involves the determination of a neutrosophic ANOVA and the determination of the neutrosophic hypotheses and decision rule.

Results

The performance of the proposed design is evaluated using the numerical examples and simulation study.

Conclusion

Based on the results observed, it can be concluded that the GLSD under neutrosophic statistics performs better than the GLSD under classical statistics in the presence of uncertainty.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在数据不确定的情况下分析希腊-拉丁方形设计
本文探讨了中性统计下的格拉诺-拉丁方阵设计(GLSD)。方法该方法包括确定中性方差分析以及确定中性假设和决策规则。结果利用数值示例和模拟研究评估了拟议设计的性能。结论根据观察到的结果,可以得出结论:在存在不确定性的情况下,中性统计下的 GLSD 比经典统计下的 GLSD 性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
期刊最新文献
Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting Optimizing poultry audio signal classification with deep learning and burn layer fusion Integrating microarray-based spatial transcriptomics and RNA-seq reveals tissue architecture in colorectal cancer A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1