Harvesting of shear piezoelectricity in a molded multicomponent crystal disc

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Materials Today Pub Date : 2024-07-24 DOI:10.1016/j.apmt.2024.102344
Suman Bhattacharya, Pierre-Andre Cazade, Krishna Hari, Tara Ryan, Lynette Keeney, Charlie O'Mahony, Sarah Guerin
{"title":"Harvesting of shear piezoelectricity in a molded multicomponent crystal disc","authors":"Suman Bhattacharya, Pierre-Andre Cazade, Krishna Hari, Tara Ryan, Lynette Keeney, Charlie O'Mahony, Sarah Guerin","doi":"10.1016/j.apmt.2024.102344","DOIUrl":null,"url":null,"abstract":"Biomolecular piezoelectrics, such as amino acids and peptides, exhibit significant shear piezoelectric responses in single crystal form. However, naturally occurring longitudinal piezoelectricity is rare and, when present, is dampened due to the multi-directional self-assembly in polycrystalline device layers. Here we utilise cocrystallisation to engineer a multicomponent crystalline salt hydrate of (+)Mandelic Acid and LLysine, (). This material exhibits a predicted single crystal longitudinal piezoelectric response of d = 3.5 pC/N. In polycrystalline form, grows as an assembly of plates which increases the measured longitudinal piezoelectricity to 11 pC/N in its macroscopic solid-state. This is due to contributions from the shear piezoelectric response d = 10.8 pC/N, originating from the presence of plates oriented at acute angles relative to the surface. The brittleness of the crystals ( = 37 GPa) is overcome by reinforcing the substrate-free piezoelectric disc with a thin polymer coating to prevent flaking. Structural analysis confirms that the triclinic structure of gives rise to this increased response due to the relative orientations of individual crystallites. Confined crystallisation of this multi-component form with a plate-like morphology, results in macroscopic self-assembly of an amino acid cocrystal that allows for the harvesting of higher shear piezoelectricity, but in a facile longitudinal configuration.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"192 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular piezoelectrics, such as amino acids and peptides, exhibit significant shear piezoelectric responses in single crystal form. However, naturally occurring longitudinal piezoelectricity is rare and, when present, is dampened due to the multi-directional self-assembly in polycrystalline device layers. Here we utilise cocrystallisation to engineer a multicomponent crystalline salt hydrate of (+)Mandelic Acid and LLysine, (). This material exhibits a predicted single crystal longitudinal piezoelectric response of d = 3.5 pC/N. In polycrystalline form, grows as an assembly of plates which increases the measured longitudinal piezoelectricity to 11 pC/N in its macroscopic solid-state. This is due to contributions from the shear piezoelectric response d = 10.8 pC/N, originating from the presence of plates oriented at acute angles relative to the surface. The brittleness of the crystals ( = 37 GPa) is overcome by reinforcing the substrate-free piezoelectric disc with a thin polymer coating to prevent flaking. Structural analysis confirms that the triclinic structure of gives rise to this increased response due to the relative orientations of individual crystallites. Confined crystallisation of this multi-component form with a plate-like morphology, results in macroscopic self-assembly of an amino acid cocrystal that allows for the harvesting of higher shear piezoelectricity, but in a facile longitudinal configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在模制多组分晶体盘中采集剪切压电效应
氨基酸和肽等生物分子压电体在单晶形式下表现出显著的剪切压电响应。然而,天然存在的纵向压电现象非常罕见,即使存在,也会因多晶器件层中的多向自组装而受到抑制。在这里,我们利用共晶技术,设计出了(+)扁桃酸和 LLysine 的多组分结晶盐水合物()。这种材料显示出预测的单晶纵向压电响应 d = 3.5 pC/N。在多晶形态下,它生长为一个板组件,在其宏观固态下,测量到的纵向压电性增加到 11 pC/N。这是由于剪切压电响应 d = 10.8 pC/N 的贡献,而剪切压电响应是由于相对于表面成锐角的板的存在而产生的。晶体的脆性(= 37 GPa)可通过在无基底压电圆盘上加固一层薄聚合物涂层来克服,以防止剥落。结构分析证实,由于单个晶体的相对取向,三菱结构导致了响应的增加。这种具有板状形态的多组分限制结晶导致了氨基酸共晶的宏观自组装,从而可以获得更高的剪切压电性,但只能以简单的纵向配置获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Materials Today
Applied Materials Today Materials Science-General Materials Science
CiteScore
14.90
自引率
3.60%
发文量
393
审稿时长
26 days
期刊介绍: Journal Name: Applied Materials Today Focus: Multi-disciplinary, rapid-publication journal Focused on cutting-edge applications of novel materials Overview: New materials discoveries have led to exciting fundamental breakthroughs. Materials research is now moving towards the translation of these scientific properties and principles.
期刊最新文献
Electrospinning and melt electrowriting of a tunable triblock-copolymer composed of poly(ε-caprolactone) and poly(L-lactic acid) for biomedical applications Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities Colorimetric polymer nanofilm-based time-temperature indicators for recording irreversible changes of temperatures in cold chain Spinodally reinforced W-Cr fusion armour Dual cytokine release from microsphere-containing decellularized extracellular matrix immune regulation promotes bone repair and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1