Europium-based complex crosslinked with hyaluronic acid sponge with controllable adaptive capability to promote effective scarless regeneration of burn wound
{"title":"Europium-based complex crosslinked with hyaluronic acid sponge with controllable adaptive capability to promote effective scarless regeneration of burn wound","authors":"Xiuhong Huang, Liqin Zheng, Lihua Li, Licheng Lin, Zonghua Liu, Changren Zhou","doi":"10.1016/j.apmt.2024.102340","DOIUrl":null,"url":null,"abstract":"The occurrence of severe skin burns may lead to delayed wound healing and persistent scarring. Agents that promote angiogenesis hold great promise for enhancing the effectiveness of wound healing, while modulation of oxidative stress, inflammation, and anti-fibrotic cytokines exhibits significant potential in alleviating scars. In this study, a novel hyaluronic acid- chitooligosaccharides/europium (HA-CE) sponge was prepared. HA-CE sponge were highly absorbent and could scavenge free radicals, as well as promoted macrophages polarized toward M2. HA-CE sponge also promoted the angiogenesis, which was related to the increased vascular endothelial growth factor (VEGF) expression. The expression of CD26 in fibroblast was down-regulated and the transforming growth factor-β3 (TGF-β3) was elevated by HA-CE sponge. The HA-CE sponge in the burnt wound model enhanced angiogenesis and anti-inflammatory responses, thereby accelerating healing of burnt wounds and ameliorating scarring-related factors to inhibit scar formation. These findings identified HA-CE sponge had potential to be developed as a dressing for burnt skin wound.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"303 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102340","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of severe skin burns may lead to delayed wound healing and persistent scarring. Agents that promote angiogenesis hold great promise for enhancing the effectiveness of wound healing, while modulation of oxidative stress, inflammation, and anti-fibrotic cytokines exhibits significant potential in alleviating scars. In this study, a novel hyaluronic acid- chitooligosaccharides/europium (HA-CE) sponge was prepared. HA-CE sponge were highly absorbent and could scavenge free radicals, as well as promoted macrophages polarized toward M2. HA-CE sponge also promoted the angiogenesis, which was related to the increased vascular endothelial growth factor (VEGF) expression. The expression of CD26 in fibroblast was down-regulated and the transforming growth factor-β3 (TGF-β3) was elevated by HA-CE sponge. The HA-CE sponge in the burnt wound model enhanced angiogenesis and anti-inflammatory responses, thereby accelerating healing of burnt wounds and ameliorating scarring-related factors to inhibit scar formation. These findings identified HA-CE sponge had potential to be developed as a dressing for burnt skin wound.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.