{"title":"Natural model reduction for kinetic equations","authors":"Zeyu Jin, Ruo Li","doi":"10.1007/s40687-024-00466-7","DOIUrl":null,"url":null,"abstract":"<p>A promising approach to investigating high-dimensional problems is to identify their intrinsically low-dimensional features, which can be achieved through recently developed techniques for effective low-dimensional representation of functions such as machine learning. Based on available finite-dimensional approximate solution manifolds, this paper proposes a novel model reduction framework for kinetic equations. The method employs projections onto tangent bundles of approximate manifolds, naturally resulting in first-order hyperbolic systems. Under certain conditions on the approximate manifolds, the reduced models preserve several crucial properties, including hyperbolicity, conservation laws, entropy dissipation, finite propagation speed, and linear stability. For the first time, this paper rigorously discusses the relation between the H-theorem of kinetic equations and the linear stability conditions of reduced systems, determining the choice of Riemannian metrics involved in the model reduction. The framework is widely applicable for the model reduction of many models in kinetic theory.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00466-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A promising approach to investigating high-dimensional problems is to identify their intrinsically low-dimensional features, which can be achieved through recently developed techniques for effective low-dimensional representation of functions such as machine learning. Based on available finite-dimensional approximate solution manifolds, this paper proposes a novel model reduction framework for kinetic equations. The method employs projections onto tangent bundles of approximate manifolds, naturally resulting in first-order hyperbolic systems. Under certain conditions on the approximate manifolds, the reduced models preserve several crucial properties, including hyperbolicity, conservation laws, entropy dissipation, finite propagation speed, and linear stability. For the first time, this paper rigorously discusses the relation between the H-theorem of kinetic equations and the linear stability conditions of reduced systems, determining the choice of Riemannian metrics involved in the model reduction. The framework is widely applicable for the model reduction of many models in kinetic theory.
研究高维问题的一个有前途的方法是识别其内在的低维特征,这可以通过最近开发的有效低维函数表示技术(如机器学习)来实现。基于现有的有限维近似解流形,本文提出了一种新颖的动力学方程模型还原框架。该方法利用投影到近似流形的切线束,自然产生一阶双曲系统。在近似流形的某些条件下,还原模型保留了几个关键性质,包括双曲性、守恒定律、熵耗散、有限传播速度和线性稳定性。本文首次严格讨论了动力学方程 H 定理与还原系统线性稳定性条件之间的关系,确定了模型还原所涉及的黎曼度量的选择。该框架广泛适用于动力学理论中许多模型的模型还原。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.