City Transmission Networks: Unraveling Disease Spread Dynamics

IF 2.8 3区 地球科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ISPRS International Journal of Geo-Information Pub Date : 2024-08-12 DOI:10.3390/ijgi13080283
Hend Alrasheed, Norah Alballa, Isra Al-Turaiki, Fahad Almutlaq, Reham Alabduljabbar
{"title":"City Transmission Networks: Unraveling Disease Spread Dynamics","authors":"Hend Alrasheed, Norah Alballa, Isra Al-Turaiki, Fahad Almutlaq, Reham Alabduljabbar","doi":"10.3390/ijgi13080283","DOIUrl":null,"url":null,"abstract":"In the midst of global efforts to curb the spread of infectious diseases, researchers worldwide are striving to unravel the intricate spatial and temporal patterns of disease transmission dynamics. Mathematical models are indispensable tools for understanding the dissemination of emerging pathogens and elucidating the evolution of epidemics. This paper introduces a novel approach by investigating city transmission networks as a framework for analyzing disease spread. In this network, major cities are depicted as nodes interconnected by edges representing disease transmission pathways. Subsequent network analysis employs various epidemiological and structural metrics to delineate the distinct roles played by cities in disease transmission. The primary objective is to identify superspreader cities. Illustratively, we apply this methodology to study COVID-19 transmission in Saudi Arabian cities, shedding light on the specific dynamics within this context. These insights offer valuable guidance for decision-making processes and the formulation of effective intervention strategies, carrying significant implications for managing public health crises.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"77 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080283","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the midst of global efforts to curb the spread of infectious diseases, researchers worldwide are striving to unravel the intricate spatial and temporal patterns of disease transmission dynamics. Mathematical models are indispensable tools for understanding the dissemination of emerging pathogens and elucidating the evolution of epidemics. This paper introduces a novel approach by investigating city transmission networks as a framework for analyzing disease spread. In this network, major cities are depicted as nodes interconnected by edges representing disease transmission pathways. Subsequent network analysis employs various epidemiological and structural metrics to delineate the distinct roles played by cities in disease transmission. The primary objective is to identify superspreader cities. Illustratively, we apply this methodology to study COVID-19 transmission in Saudi Arabian cities, shedding light on the specific dynamics within this context. These insights offer valuable guidance for decision-making processes and the formulation of effective intervention strategies, carrying significant implications for managing public health crises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市传播网络:解读疾病传播动态
在全球遏制传染病蔓延的努力中,全世界的研究人员都在努力揭示疾病传播动态错综复杂的时空模式。数学模型是了解新病原体传播和阐明流行病演变不可或缺的工具。本文通过研究城市传播网络作为分析疾病传播的框架,引入了一种新方法。在该网络中,主要城市被描绘成由代表疾病传播途径的边相互连接的节点。随后的网络分析采用了各种流行病学和结构指标,以划分城市在疾病传播中扮演的不同角色。主要目标是识别超级传播城市。我们应用这种方法研究了 COVID-19 在沙特阿拉伯城市的传播情况,揭示了这一背景下的特殊动态。这些见解为决策过程和制定有效的干预策略提供了宝贵的指导,对管理公共卫生危机具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISPRS International Journal of Geo-Information
ISPRS International Journal of Geo-Information GEOGRAPHY, PHYSICALREMOTE SENSING&nb-REMOTE SENSING
CiteScore
6.90
自引率
11.80%
发文量
520
审稿时长
19.87 days
期刊介绍: ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.
期刊最新文献
Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques Potentials in Using VR for Facilitating Geography Teaching in Classrooms: A Systematic Review Urban Internal Network Structure and Resilience Characteristics from the Perspective of Population Mobility: A Case Study of Nanjing, China Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan Mapping Localization Preferences for Residential Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1