Vpit: real-time embedded single object 3D tracking using voxel pseudo images

Illia Oleksiienko, Paraskevi Nousi, Nikolaos Passalis, Anastasios Tefas, Alexandros Iosifidis
{"title":"Vpit: real-time embedded single object 3D tracking using voxel pseudo images","authors":"Illia Oleksiienko, Paraskevi Nousi, Nikolaos Passalis, Anastasios Tefas, Alexandros Iosifidis","doi":"10.1007/s00521-024-10259-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel voxel-based 3D single object tracking (3D SOT) method called Voxel Pseudo Image Tracking (VPIT). VPIT is the first method that uses voxel pseudo images for 3D SOT. The input point cloud is structured by pillar-based voxelization, and the resulting pseudo image is used as an input to a 2D-like Siamese SOT method. The pseudo image is created in the Bird’s-eye View (BEV) coordinates; and therefore, the objects in it have constant size. Thus, only the object rotation can change in the new coordinate system and not the object scale. For this reason, we replace multi-scale search with a multi-rotation search, where differently rotated search regions are compared against a single target representation to predict both position and rotation of the object. Experiments on KITTI [1] Tracking dataset show that VPIT is the fastest 3D SOT method and maintains competitive Success and Precision values. Application of a SOT method in a real-world scenario meets with limitations such as lower computational capabilities of embedded devices and a latency-unforgiving environment, where the method is forced to skip certain data frames if the inference speed is not high enough. We implement a real-time evaluation protocol and show that other methods lose most of their performance on embedded devices; while, VPIT maintains its ability to track the object.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10259-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel voxel-based 3D single object tracking (3D SOT) method called Voxel Pseudo Image Tracking (VPIT). VPIT is the first method that uses voxel pseudo images for 3D SOT. The input point cloud is structured by pillar-based voxelization, and the resulting pseudo image is used as an input to a 2D-like Siamese SOT method. The pseudo image is created in the Bird’s-eye View (BEV) coordinates; and therefore, the objects in it have constant size. Thus, only the object rotation can change in the new coordinate system and not the object scale. For this reason, we replace multi-scale search with a multi-rotation search, where differently rotated search regions are compared against a single target representation to predict both position and rotation of the object. Experiments on KITTI [1] Tracking dataset show that VPIT is the fastest 3D SOT method and maintains competitive Success and Precision values. Application of a SOT method in a real-world scenario meets with limitations such as lower computational capabilities of embedded devices and a latency-unforgiving environment, where the method is forced to skip certain data frames if the inference speed is not high enough. We implement a real-time evaluation protocol and show that other methods lose most of their performance on embedded devices; while, VPIT maintains its ability to track the object.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vpit:使用体素伪图像进行实时嵌入式单个物体 3D 跟踪
本文提出了一种新颖的基于体素的三维单个物体跟踪(3D SOT)方法,称为体素伪图像跟踪(VPIT)。VPIT 是第一种使用体素伪图像进行 3D SOT 的方法。输入点云通过基于柱的体素化进行结构化,生成的伪图像用作类似二维连体 SOT 方法的输入。伪图像以鸟瞰图(BEV)坐标创建,因此其中的物体大小不变。因此,在新的坐标系中,只有物体的旋转会发生变化,而物体的比例不会发生变化。因此,我们用多旋转搜索取代多尺度搜索,将不同旋转搜索区域与单一目标表示进行比较,以预测物体的位置和旋转。在 KITTI [1] 跟踪数据集上的实验表明,VPIT 是最快的 3D SOT 方法,并保持了具有竞争力的成功率和精确度值。在现实世界中应用 SOT 方法会遇到一些限制,例如嵌入式设备的计算能力较低,以及延迟环境不宽松,如果推理速度不够快,该方法就会被迫跳过某些数据帧。我们实施了一个实时评估协议,结果表明其他方法在嵌入式设备上的性能大打折扣,而 VPIT 却能保持跟踪物体的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential analysis of radiographic images to determine infestation of rice seeds Recommendation systems with user and item profiles based on symbolic modal data End-to-end entity extraction from OCRed texts using summarization models Firearm detection using DETR with multiple self-coordinated neural networks Automated defect identification in coherent diffraction imaging with smart continual learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1