Cooperative Sensing for 6G Mobile Cellular Networks: Feasibility, Performance, and Field Trial

Guangyi Liu;Rongyan Xi;Zixiang Han;Lincong Han;Xiaozhou Zhang;Liang Ma;Yajuan Wang;Mengting Lou;Jing Jin;Qixing Wang;Jiangzhou Wang
{"title":"Cooperative Sensing for 6G Mobile Cellular Networks: Feasibility, Performance, and Field Trial","authors":"Guangyi Liu;Rongyan Xi;Zixiang Han;Lincong Han;Xiaozhou Zhang;Liang Ma;Yajuan Wang;Mengting Lou;Jing Jin;Qixing Wang;Jiangzhou Wang","doi":"10.1109/JSAC.2024.3414596","DOIUrl":null,"url":null,"abstract":"The combination of communication and sensing is envisioned as a novel feature in the forthcoming sixth-generation (6G) wireless communication. The conventional approach to the joint sensing and communication (JSAC) system is utilizing one base station (BS) as both a sensing transmitter and a sensing receiver, which is known as monostatic sensing. However, the resulting self-interference issue requires additional hardware promotion to achieve full-duplexing. To overcome this issue, in this paper, we focus on cooperative sensing where the transmitter and receivers are non-co-located, which includes the bistatic and multistatic sensing. Specifically, the system model of cooperative sensing based on mobile networks is established. To demonstrate the feasibility of cooperative sensing, the bistatic radar cross section (RCS) is provided. As for the sensing method, a refined orthogonal matching pursuit (R-OMP) method is proposed to estimate the channel parameters and data fusion is also provided to derive the objects’ positions and velocities. Considering the non-negligible interference in the cooperative JSAC networks, we also discuss interference management in this paper. Simulation results show that the proposed cooperative sensing system improves the position and velocity estimation accuracy by over 20% when compared with monostatic sensing. The preliminary experiment results also verify the feasibility of the proposed system.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 10","pages":"2863-2876"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10557715/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of communication and sensing is envisioned as a novel feature in the forthcoming sixth-generation (6G) wireless communication. The conventional approach to the joint sensing and communication (JSAC) system is utilizing one base station (BS) as both a sensing transmitter and a sensing receiver, which is known as monostatic sensing. However, the resulting self-interference issue requires additional hardware promotion to achieve full-duplexing. To overcome this issue, in this paper, we focus on cooperative sensing where the transmitter and receivers are non-co-located, which includes the bistatic and multistatic sensing. Specifically, the system model of cooperative sensing based on mobile networks is established. To demonstrate the feasibility of cooperative sensing, the bistatic radar cross section (RCS) is provided. As for the sensing method, a refined orthogonal matching pursuit (R-OMP) method is proposed to estimate the channel parameters and data fusion is also provided to derive the objects’ positions and velocities. Considering the non-negligible interference in the cooperative JSAC networks, we also discuss interference management in this paper. Simulation results show that the proposed cooperative sensing system improves the position and velocity estimation accuracy by over 20% when compared with monostatic sensing. The preliminary experiment results also verify the feasibility of the proposed system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6G 移动蜂窝网络的合作传感:可行性、性能和现场试验
在即将到来的第六代(6G)无线通信中,通信与传感的结合被视为一项新功能。联合传感和通信(JSAC)系统的传统方法是利用一个基站(BS)作为传感发射器和传感接收器,即所谓的单静态传感。然而,由此产生的自干扰问题需要额外的硬件升级才能实现全双工。为了克服这一问题,本文重点研究发射机和接收机不共址的合作传感,包括双静态传感和多静态传感。具体而言,本文建立了基于移动网络的合作传感系统模型。为了证明合作传感的可行性,提供了双稳态雷达截面(RCS)。在传感方法方面,提出了一种精炼正交匹配追寻(R-OMP)方法来估计信道参数,还提供了数据融合方法来推导物体的位置和速度。考虑到合作 JSAC 网络中存在不可忽略的干扰,本文还讨论了干扰管理问题。仿真结果表明,与单静态传感相比,所提出的合作传感系统提高了 20% 以上的位置和速度估计精度。初步实验结果也验证了所提系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1