{"title":"Cooperative Sensing for 6G Mobile Cellular Networks: Feasibility, Performance, and Field Trial","authors":"Guangyi Liu;Rongyan Xi;Zixiang Han;Lincong Han;Xiaozhou Zhang;Liang Ma;Yajuan Wang;Mengting Lou;Jing Jin;Qixing Wang;Jiangzhou Wang","doi":"10.1109/JSAC.2024.3414596","DOIUrl":null,"url":null,"abstract":"The combination of communication and sensing is envisioned as a novel feature in the forthcoming sixth-generation (6G) wireless communication. The conventional approach to the joint sensing and communication (JSAC) system is utilizing one base station (BS) as both a sensing transmitter and a sensing receiver, which is known as monostatic sensing. However, the resulting self-interference issue requires additional hardware promotion to achieve full-duplexing. To overcome this issue, in this paper, we focus on cooperative sensing where the transmitter and receivers are non-co-located, which includes the bistatic and multistatic sensing. Specifically, the system model of cooperative sensing based on mobile networks is established. To demonstrate the feasibility of cooperative sensing, the bistatic radar cross section (RCS) is provided. As for the sensing method, a refined orthogonal matching pursuit (R-OMP) method is proposed to estimate the channel parameters and data fusion is also provided to derive the objects’ positions and velocities. Considering the non-negligible interference in the cooperative JSAC networks, we also discuss interference management in this paper. Simulation results show that the proposed cooperative sensing system improves the position and velocity estimation accuracy by over 20% when compared with monostatic sensing. The preliminary experiment results also verify the feasibility of the proposed system.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 10","pages":"2863-2876"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10557715/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of communication and sensing is envisioned as a novel feature in the forthcoming sixth-generation (6G) wireless communication. The conventional approach to the joint sensing and communication (JSAC) system is utilizing one base station (BS) as both a sensing transmitter and a sensing receiver, which is known as monostatic sensing. However, the resulting self-interference issue requires additional hardware promotion to achieve full-duplexing. To overcome this issue, in this paper, we focus on cooperative sensing where the transmitter and receivers are non-co-located, which includes the bistatic and multistatic sensing. Specifically, the system model of cooperative sensing based on mobile networks is established. To demonstrate the feasibility of cooperative sensing, the bistatic radar cross section (RCS) is provided. As for the sensing method, a refined orthogonal matching pursuit (R-OMP) method is proposed to estimate the channel parameters and data fusion is also provided to derive the objects’ positions and velocities. Considering the non-negligible interference in the cooperative JSAC networks, we also discuss interference management in this paper. Simulation results show that the proposed cooperative sensing system improves the position and velocity estimation accuracy by over 20% when compared with monostatic sensing. The preliminary experiment results also verify the feasibility of the proposed system.