A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-12 DOI:10.1007/s12293-024-00420-8
Haowen Zhan, Yue Zhang, Jingbo Huang, Yanjie Song, Lining Xing, Jie Wu, Zengyun Gao
{"title":"A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers","authors":"Haowen Zhan, Yue Zhang, Jingbo Huang, Yanjie Song, Lining Xing, Jie Wu, Zengyun Gao","doi":"10.1007/s12293-024-00420-8","DOIUrl":null,"url":null,"abstract":"<p>In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00420-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑多个救援中心的无人机海上搜救路径规划问题的基于强化学习的进化算法
在海上紧急情况领域,无人驾驶飞行器(UAV)在加强搜救(SAR)行动方面发挥着至关重要的作用。由于其成本效益高、用途广泛且效果显著,它们有助于有效营救遇险船员、加强海上监视和维护国家安全。然而,幅员辽阔的海域和瞬息万变的海况使得单一的 SAR 中心不足以应对复杂的紧急情况。因此,制定从多个 SAR 中心快速部署无人机资源的战略,用于区域侦察和支持海上救援行动至关重要。本研究针对考虑多个救援中心的海上搜救路径规划问题引入了图结构规划模型(MSARPPP-MRC)。该模型纳入了 SAR 中心之间的工作量分配和无人机操作约束。我们提出了一种基于强化学习的遗传算法(GA-RL)来解决 MSARPPP-MRC 问题。GA-RL 使用启发式规则来初始化种群,并采用 Q-learning 方法来管理每一代的后代,包括保留、存储或处置。当精英库的容量达到一定程度时,就会决定是否利用这些成员来刷新种群。此外,还应用了自适应交叉和扰动策略来开发更有效的 SAR 方案。广泛的测试证明,GA-RL 在优化效果和效率方面超越了其他算法,突出了强化学习在种群管理方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1