{"title":"Mesoscopic V2X simulation framework to enhance simulation performance","authors":"Tamás Ormándi, Balázs Varga","doi":"10.1016/j.simpat.2024.103003","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid evolution of vehicular communication has led to numerous new algorithms and applications based on this technology. Neglecting issues arising from wireless communication, such as the loss of information and delays, can result in problems such as reduced performance or compromised safety. However, while simulating V2X demands significant computational resources, it proves unsuitable for complex testing setups, including mixed-reality testing. This paper enhances V2X simulation by relying on an ecosystem based on SUMO, OMNeT++, Veins, and INET simulation tools. The proposed novel method introduces mesoscopic simulation in Vehicular Ad-hoc Networks to increase simulation performance to a level where real-time behavior is achievable. Meanwhile, it can also be beneficial in the acceleration of regular simulations. The presented solution introduces Meso nodes that are capable of aggregating communication across an entire traffic area, facilitated by a neural network function approximator. Results showed substantial performance gain while simulation accuracy was preserved.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103003"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001175/pdfft?md5=42364717b342c8e9528e19a5ec83b1f9&pid=1-s2.0-S1569190X24001175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001175","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid evolution of vehicular communication has led to numerous new algorithms and applications based on this technology. Neglecting issues arising from wireless communication, such as the loss of information and delays, can result in problems such as reduced performance or compromised safety. However, while simulating V2X demands significant computational resources, it proves unsuitable for complex testing setups, including mixed-reality testing. This paper enhances V2X simulation by relying on an ecosystem based on SUMO, OMNeT++, Veins, and INET simulation tools. The proposed novel method introduces mesoscopic simulation in Vehicular Ad-hoc Networks to increase simulation performance to a level where real-time behavior is achievable. Meanwhile, it can also be beneficial in the acceleration of regular simulations. The presented solution introduces Meso nodes that are capable of aggregating communication across an entire traffic area, facilitated by a neural network function approximator. Results showed substantial performance gain while simulation accuracy was preserved.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.