{"title":"Frontiers | Exploring the driving factors of bryophyte assemblage distribution patterns in Tibet","authors":"Jiqi Gu, Xiaotong Song, Yanhui Ye, Xiaohong Shao, Yujia Liao, Xiaoming Shao","doi":"10.3389/fevo.2024.1376263","DOIUrl":null,"url":null,"abstract":"Plant communities are complex systems shaped by a combination of deterministic and stochastic ecological processes. Bryophytes are an essential component of plant diversity in natural ecosystems, yet our understanding of their community ecology needs to catch up to that of other organisms. The unique geological history, alpine climatic conditions, and high habitat heterogeneity of Tibet provide suitable areas for bryophytes to survive in the alpine regions. Therefore, field surveys were conducted across 184 plots in forest, thicket, and herbaceous vegetation of Tibet to investigate the role of deterministic processes such as biological interactions and abiotic effects, along with stochastic processes, in shaping the distribution of bryophyte assemblages. We employed various analytical methods, including mixed effects models, partial least squares path modeling, null model analysis, and neutral community models. The study showed that bryophyte richness was highest in forests. Bryophyte assemblages showed greater segregation in forest and thicket environments compared to herbaceous vegetation. As the influence of stochastic processes increased, that of deterministic processes decreased from forests through thickets to herbaceous vegetation. Deterministic processes were the main driving forces for the bryophyte assemblage pattern. Soil properties and climatic factors, particularly pH played a key role in determining bryophyte patterns in Tibet. This study has deepened our comprehension of how deterministic and stochastic ecological processes interplay and shape bryophyte distribution patterns in Tibet.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1376263","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant communities are complex systems shaped by a combination of deterministic and stochastic ecological processes. Bryophytes are an essential component of plant diversity in natural ecosystems, yet our understanding of their community ecology needs to catch up to that of other organisms. The unique geological history, alpine climatic conditions, and high habitat heterogeneity of Tibet provide suitable areas for bryophytes to survive in the alpine regions. Therefore, field surveys were conducted across 184 plots in forest, thicket, and herbaceous vegetation of Tibet to investigate the role of deterministic processes such as biological interactions and abiotic effects, along with stochastic processes, in shaping the distribution of bryophyte assemblages. We employed various analytical methods, including mixed effects models, partial least squares path modeling, null model analysis, and neutral community models. The study showed that bryophyte richness was highest in forests. Bryophyte assemblages showed greater segregation in forest and thicket environments compared to herbaceous vegetation. As the influence of stochastic processes increased, that of deterministic processes decreased from forests through thickets to herbaceous vegetation. Deterministic processes were the main driving forces for the bryophyte assemblage pattern. Soil properties and climatic factors, particularly pH played a key role in determining bryophyte patterns in Tibet. This study has deepened our comprehension of how deterministic and stochastic ecological processes interplay and shape bryophyte distribution patterns in Tibet.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.