Detecting Scattering Centers of Complex Scatterers Through Induced Surface Currents [Em Programmer’s Notebook]

IF 4.2 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Antennas and Propagation Magazine Pub Date : 2024-08-08 DOI:10.1109/MAP.2024.3411483
Aşkın Altınoklu;Alper Kürşat Öztürk;Mehmet Erim İnal
{"title":"Detecting Scattering Centers of Complex Scatterers Through Induced Surface Currents [Em Programmer’s Notebook]","authors":"Aşkın Altınoklu;Alper Kürşat Öztürk;Mehmet Erim İnal","doi":"10.1109/MAP.2024.3411483","DOIUrl":null,"url":null,"abstract":"This article presents an accurate and efficient method for determining the locations of scattering centers on a complex 3D scatterer. For a given excitation, a localized integration technique is used to calculate the contribution of each surface mesh element to the scattered field in the specified direction. The contribution of a point is computed exclusively by utilizing the currents induced on the surface of the scatterer. The effect of a given point situated on the surface of the scatterer is quantified by the radiation of the current elements within a predefined volume around that point. The algorithm is efficiently implemented with the aid of parallel computing. Numerical experiments involving radar cross-section reduction (RCSR) and antenna siting on a large platform are performed. The suggested approach demonstrates a superior performance compared to traditional methods, such as 1D range profiling, in terms of both efficiency and accuracy for extracting scattering centers.","PeriodicalId":13090,"journal":{"name":"IEEE Antennas and Propagation Magazine","volume":"66 4","pages":"98-111"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Magazine","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10631749/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an accurate and efficient method for determining the locations of scattering centers on a complex 3D scatterer. For a given excitation, a localized integration technique is used to calculate the contribution of each surface mesh element to the scattered field in the specified direction. The contribution of a point is computed exclusively by utilizing the currents induced on the surface of the scatterer. The effect of a given point situated on the surface of the scatterer is quantified by the radiation of the current elements within a predefined volume around that point. The algorithm is efficiently implemented with the aid of parallel computing. Numerical experiments involving radar cross-section reduction (RCSR) and antenna siting on a large platform are performed. The suggested approach demonstrates a superior performance compared to traditional methods, such as 1D range profiling, in terms of both efficiency and accuracy for extracting scattering centers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过诱导表面电流探测复杂散射体的散射中心 [Em 程序员笔记本]
本文介绍了一种精确而高效的方法,用于确定复杂三维散射体上散射中心的位置。对于给定的激励,采用局部积分技术计算每个表面网格元素对指定方向散射场的贡献。点的贡献完全通过利用散射体表面上的感应电流来计算。位于散射体表面的给定点的影响通过该点周围预定体积内的电流元素辐射进行量化。该算法借助并行计算有效实现。在一个大型平台上进行了涉及雷达截面缩小(RCSR)和天线选址的数值实验。与传统方法(如一维范围剖面法)相比,所建议的方法在提取散射中心的效率和准确性方面都表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Antennas and Propagation Magazine
IEEE Antennas and Propagation Magazine 工程技术-工程:电子与电气
CiteScore
7.00
自引率
5.70%
发文量
186
审稿时长
3 months
期刊介绍: IEEE Antennas and Propagation Magazine actively solicits feature articles that describe engineering activities taking place in industry, government, and universities. All feature articles are subject to peer review. Emphasis is placed on providing the reader with a general understanding of either a particular subject or of the technical challenges being addressed by various organizations, as well as their capabilities to cope with these challenges. Articles presenting new results, review, tutorial, and historical articles are welcome, as are articles describing examples of good engineering. The technical field of interest of the Magazine is the same as the IEEE Antennas and Propagation Society, and includes the following: antennas, including analysis, design, development, measurement, and testing; radiation, propagation, and the interaction of electromagnetic waves with discrete and continuous media; and applications and systems pertinent to antennas, propagation, and sensing, such as applied optics, millimeter- and sub-millimeter-wave techniques, antenna signal processing and control, radio astronomy, and propagation and radiation aspects of terrestrial and space-based communication, including wireless, mobile, satellite, and telecommunications.
期刊最新文献
Table of Contents Front Cover Masthead Transitioning From Academia to a Professional Career [Young Professionals] Society Officers & Administrative Committee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1