{"title":"Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia","authors":"Tadele Bedo Gelete, Pernaidu Pasala, Nigus Gebremedhn Abay, Gezahegn Weldu Woldemariam, Kalid Hassen Yasin, Erana Kebede, Ibsa Aliyi","doi":"10.3389/fenvs.2024.1410741","DOIUrl":null,"url":null,"abstract":"Land degradation from gully erosion poses a significant threat to the Erer watershed in Eastern Ethiopia, particularly due to agricultural activities and resource exploitation. Identifying erosion-prone areas and underlying factors using advanced machine learning algorithms (MLAs) and geospatial analysis is crucial for addressing this problem and prioritizing adaptive and mitigating strategies. However, previous studies have not leveraged machine learning (ML) and GIS-based approaches to generate susceptibility maps identifying these areas and conditioning factors, hindering sustainable watershed management solutions. This study aimed to predict gully erosion susceptibility (GES) and identify underlying areas and factors in the Erer watershed. Four ML models, namely, XGBoost, random forest (RF), support vector machine (SVM), and artificial neural network (ANN), were integrated with geospatial analysis using 22 geoenvironmental predictors and 1,200 inventory points (70% used for training and 30% for testing). Model performance and robustness were validated through the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa coefficient, F1 score, and logarithmic loss. The relative slope position is most influential, with 100% importance in SVM and RF and 95% importance in XGBoost, while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost demonstrated robustness and superior prediction/mapping, achieving an AUC of 0.97, 91% accuracy, 92% precision, and 81% kappa while maintaining a low logloss (0.0394). However, SVM excelled in classifying gully resistant/susceptible areas (97% sensitivity, 98% specificity, and 91% F1 score). The ANN model predicted the most areas with very high gully susceptibility (13.74%), followed by the SVM (11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the most areas with very low susceptibility (70.19%). The ensemble technique was employed to further enhance GES modeling, and it outperformed the individual models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5% sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24% moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses revealed the most susceptible areas, including the Babile, Fedis, Harar, and Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%, respectively. This study offers robust and flexible ML models with comprehensive validation metrics to enhance GES modeling and identify gully prone areas and factors, thereby supporting decision-making for sustainable watershed conservation and land degradation prevention.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"193 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1410741","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Land degradation from gully erosion poses a significant threat to the Erer watershed in Eastern Ethiopia, particularly due to agricultural activities and resource exploitation. Identifying erosion-prone areas and underlying factors using advanced machine learning algorithms (MLAs) and geospatial analysis is crucial for addressing this problem and prioritizing adaptive and mitigating strategies. However, previous studies have not leveraged machine learning (ML) and GIS-based approaches to generate susceptibility maps identifying these areas and conditioning factors, hindering sustainable watershed management solutions. This study aimed to predict gully erosion susceptibility (GES) and identify underlying areas and factors in the Erer watershed. Four ML models, namely, XGBoost, random forest (RF), support vector machine (SVM), and artificial neural network (ANN), were integrated with geospatial analysis using 22 geoenvironmental predictors and 1,200 inventory points (70% used for training and 30% for testing). Model performance and robustness were validated through the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa coefficient, F1 score, and logarithmic loss. The relative slope position is most influential, with 100% importance in SVM and RF and 95% importance in XGBoost, while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost demonstrated robustness and superior prediction/mapping, achieving an AUC of 0.97, 91% accuracy, 92% precision, and 81% kappa while maintaining a low logloss (0.0394). However, SVM excelled in classifying gully resistant/susceptible areas (97% sensitivity, 98% specificity, and 91% F1 score). The ANN model predicted the most areas with very high gully susceptibility (13.74%), followed by the SVM (11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the most areas with very low susceptibility (70.19%). The ensemble technique was employed to further enhance GES modeling, and it outperformed the individual models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5% sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24% moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses revealed the most susceptible areas, including the Babile, Fedis, Harar, and Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%, respectively. This study offers robust and flexible ML models with comprehensive validation metrics to enhance GES modeling and identify gully prone areas and factors, thereby supporting decision-making for sustainable watershed conservation and land degradation prevention.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.