{"title":"Paraben residues in wastewater and surface water: a case study of KwaZulu Natal and Gauteng provinces (South Africa) during the COVID-19 pandemic","authors":"Neliswa Mpayipheli, Anele Mpupa, Ntakadzeni Edwin Madala, Philiswa Nosizo Nomngongo","doi":"10.3389/fenvs.2024.1418375","DOIUrl":null,"url":null,"abstract":"Introduction: The presence of pharmaceuticals and personal care products in environmental matrices is considered one of the major scientific concerns. Most of these substances are disposed of unchanged through wastewater treatment plants and sewage systems. Consequently, they are continuously introduced into the water systems and progressively contaminate surface, ground and drinking water. During the COVID-19 pandemic, a large number of emerging contaminants including parabens were released to the environment through various routes. In this study, the occurrence of parabens (methylparaben (MePB), ethylparaben (EtPB), propylparaben (PrPB), and butylparaben (BuPB) was investigated in wastewater samples from various wastewater treatment plants (WWTPs) and the receiving surface waters in KwaZulu Natal and Gauteng Provinces (South Africa).Methods: The samples were collected between October 2020 and December 2021, covering the 2<jats:sup>nd</jats:sup>, 3<jats:sup>rd</jats:sup> and 4<jats:sup>th</jats:sup> waves of the COVID-19 pandemic. A solid phase extraction protocol with high-performance liquid chromatography was used to extract and enrich parabens before analysis.Results and Discussion: Methylparaben (2.02–84.7 μg/L), EtPB (&lt;0.24–24.8 μg/L), PrPB (&lt;0.26–55.1 μg/L), and BuPB (&lt;0.27–17.3 μg/L) were quantified in wastewater influent collected WWTPs of KwaZulu Natal Province. While &lt;0.19–5.43 μg/L, &lt;0.16–5.63 μg/L, &lt;0.17–6.89 μg/L, and &lt;0.19–5.32 μg/L for MePB, EtPB, PrPB, and BuPB, respectively, were quantified in effluent wastewater from the same province. The concentrations of MePB, EtPB, PrPB, and BuPB in influent wastewater from Gauteng Province were 2.58–123 μg/L, &lt;0.24–33.6 μg/L, 3.77–73.4 μg/L and &lt;0.27–85.8 μg/L, respectively. In effluent wastewater, concentrations ranging from 0.24–17.76 μg/L (MePB), &lt;0.16–4.88 μg/L (EtPB), 0.69-12.5 μg/L (PrPB), and &lt;0.19–4.726 μg/L (BuPB) were quantified. During the 4<jats:sup>th</jats:sup> wave, the concentrations of parabens in surface water were lower compared to the second and third waves of the pandemic. In general, the paraben residues in the surface of KwaZulu Natal Province (&lt;0.08–16.4 μg/L) were higher than those in Gauteng Province (0.08-3.14 µg/L). Methylparaben and propylparaben were dominant in all investigated samples (wastewater and surface water), followed by ethylparaben. The ecotoxicological risk assessment was carried out for aquatic biota, which was estimated in terms of risk quotients (RQs). RQs for the target compounds in river water indicated that MePB and EtPB pose low risk, whereas PrPB and BuPB pose low to medium risk to aquatic organisms.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1418375","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The presence of pharmaceuticals and personal care products in environmental matrices is considered one of the major scientific concerns. Most of these substances are disposed of unchanged through wastewater treatment plants and sewage systems. Consequently, they are continuously introduced into the water systems and progressively contaminate surface, ground and drinking water. During the COVID-19 pandemic, a large number of emerging contaminants including parabens were released to the environment through various routes. In this study, the occurrence of parabens (methylparaben (MePB), ethylparaben (EtPB), propylparaben (PrPB), and butylparaben (BuPB) was investigated in wastewater samples from various wastewater treatment plants (WWTPs) and the receiving surface waters in KwaZulu Natal and Gauteng Provinces (South Africa).Methods: The samples were collected between October 2020 and December 2021, covering the 2nd, 3rd and 4th waves of the COVID-19 pandemic. A solid phase extraction protocol with high-performance liquid chromatography was used to extract and enrich parabens before analysis.Results and Discussion: Methylparaben (2.02–84.7 μg/L), EtPB (<0.24–24.8 μg/L), PrPB (<0.26–55.1 μg/L), and BuPB (<0.27–17.3 μg/L) were quantified in wastewater influent collected WWTPs of KwaZulu Natal Province. While <0.19–5.43 μg/L, <0.16–5.63 μg/L, <0.17–6.89 μg/L, and <0.19–5.32 μg/L for MePB, EtPB, PrPB, and BuPB, respectively, were quantified in effluent wastewater from the same province. The concentrations of MePB, EtPB, PrPB, and BuPB in influent wastewater from Gauteng Province were 2.58–123 μg/L, <0.24–33.6 μg/L, 3.77–73.4 μg/L and <0.27–85.8 μg/L, respectively. In effluent wastewater, concentrations ranging from 0.24–17.76 μg/L (MePB), <0.16–4.88 μg/L (EtPB), 0.69-12.5 μg/L (PrPB), and <0.19–4.726 μg/L (BuPB) were quantified. During the 4th wave, the concentrations of parabens in surface water were lower compared to the second and third waves of the pandemic. In general, the paraben residues in the surface of KwaZulu Natal Province (<0.08–16.4 μg/L) were higher than those in Gauteng Province (0.08-3.14 µg/L). Methylparaben and propylparaben were dominant in all investigated samples (wastewater and surface water), followed by ethylparaben. The ecotoxicological risk assessment was carried out for aquatic biota, which was estimated in terms of risk quotients (RQs). RQs for the target compounds in river water indicated that MePB and EtPB pose low risk, whereas PrPB and BuPB pose low to medium risk to aquatic organisms.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.