The function of phytogenic mounds in the accumulation and conservation of soil seed banks in semiarid areas with water erosion

IF 3.3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Frontiers in Environmental Science Pub Date : 2024-08-05 DOI:10.3389/fenvs.2024.1427928
W. J. Nie, H. D. Du, S. S. Xie, Y. L. Bi
{"title":"The function of phytogenic mounds in the accumulation and conservation of soil seed banks in semiarid areas with water erosion","authors":"W. J. Nie, H. D. Du, S. S. Xie, Y. L. Bi","doi":"10.3389/fenvs.2024.1427928","DOIUrl":null,"url":null,"abstract":"BackgroundPhytogenic mounds are a type of microtopography formed under perennial plants canopies in water erosion areas. However, the function of phytogenic mounds in seed assemblages and their ecological consequences remain poorly understood in semiarid areas with water erosion. Thus, understanding the characteristics of seed banks on mounds is crucial for ecosystem conservation and management in water-eroded areas.MethodsWe compared the quantity and composition of soil seed banks on the upslope and downslope parts of mounds and intercanopy surfaces along four slope gradients. We also explored the relationships among the soil seed bank, aboveground vegetation, and environmental factors. Furthermore, the species similarity between the soil seed bank and aboveground vegetation was analyzed to clarify the important ecological consequences of phytogenic mounds for plant community construction in serious soil erosion area.ResultsFor slopes with α ≤ 46.6%, the intercanopy surfaces had greater soil seed bank species composition, density, and diversity than did the phytogenic mounds, and these characteristics showed no significant differences between the upslope and downslope parts of the mounds. As the slope increased, the soil seed bank density and species composition increased on the upslope part of the mound, and reached a maximum for slopes with α > 70%, while the downslope part of the mound negatively effected on seed aggregation. The sediment accumulation rate, soil moisture, particle size distribution, pH, organic matter carbon, and hardness were significantly correlated with the soil seed bank density and diversity in the study area. For slopes with 0 < α ≤ 26.8%, the species similarity coefficient between the soil seed bank and aboveground vegetation was the highest for the intercanopy surface. This species similarity on the upslope part of the mound showed an increasing trend with increasing slope gradient, while the downslope part of the mound had the opposite trend. For slopes with α > 70%, the upslope part of the mound did not only have more species in the soil seed bank but also had more species in aboveground vegetation than did the downslope part of the mound and intercanopy surface.ConclusionFor slopes with α ≤ 46.6%, phytogenic mounds had barely impact soil seed bank accumulation and conservation in semiarid and eroded areas. For slopes with α > 46.6%, the mounds (particularly on the upslope part of the mound) showed seed assemblage functions, which are coupled with improving edaphic conditions and decreasing microhabitat stress; thus, phytogenic mounds, or areas of microtopography, can be used to promote restoration success in semiarid eroded areas.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1427928","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundPhytogenic mounds are a type of microtopography formed under perennial plants canopies in water erosion areas. However, the function of phytogenic mounds in seed assemblages and their ecological consequences remain poorly understood in semiarid areas with water erosion. Thus, understanding the characteristics of seed banks on mounds is crucial for ecosystem conservation and management in water-eroded areas.MethodsWe compared the quantity and composition of soil seed banks on the upslope and downslope parts of mounds and intercanopy surfaces along four slope gradients. We also explored the relationships among the soil seed bank, aboveground vegetation, and environmental factors. Furthermore, the species similarity between the soil seed bank and aboveground vegetation was analyzed to clarify the important ecological consequences of phytogenic mounds for plant community construction in serious soil erosion area.ResultsFor slopes with α ≤ 46.6%, the intercanopy surfaces had greater soil seed bank species composition, density, and diversity than did the phytogenic mounds, and these characteristics showed no significant differences between the upslope and downslope parts of the mounds. As the slope increased, the soil seed bank density and species composition increased on the upslope part of the mound, and reached a maximum for slopes with α > 70%, while the downslope part of the mound negatively effected on seed aggregation. The sediment accumulation rate, soil moisture, particle size distribution, pH, organic matter carbon, and hardness were significantly correlated with the soil seed bank density and diversity in the study area. For slopes with 0 < α ≤ 26.8%, the species similarity coefficient between the soil seed bank and aboveground vegetation was the highest for the intercanopy surface. This species similarity on the upslope part of the mound showed an increasing trend with increasing slope gradient, while the downslope part of the mound had the opposite trend. For slopes with α > 70%, the upslope part of the mound did not only have more species in the soil seed bank but also had more species in aboveground vegetation than did the downslope part of the mound and intercanopy surface.ConclusionFor slopes with α ≤ 46.6%, phytogenic mounds had barely impact soil seed bank accumulation and conservation in semiarid and eroded areas. For slopes with α > 46.6%, the mounds (particularly on the upslope part of the mound) showed seed assemblage functions, which are coupled with improving edaphic conditions and decreasing microhabitat stress; thus, phytogenic mounds, or areas of microtopography, can be used to promote restoration success in semiarid eroded areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水土流失半干旱地区植生丘在积累和保护土壤种子库方面的功能
背景植生丘是水蚀地区多年生植物树冠下形成的一种微地形。然而,人们对水蚀半干旱地区植生丘在种子群中的功能及其生态后果仍然知之甚少。因此,了解土丘种子库的特征对于水蚀地区的生态系统保护和管理至关重要。方法我们比较了四个坡度上土丘上坡和下坡部分以及树冠间表面土壤种子库的数量和组成。我们还探讨了土壤种子库、地上植被和环境因素之间的关系。结果对于α≤46.6%的斜坡,树冠间表面的土壤种子库物种组成、密度和多样性均高于植物生发丘,且这些特征在植物生发丘的上坡和下坡部分之间无显著差异。随着坡度的增加,土丘上坡部分的土壤种子库密度和物种组成增加,在坡度为 α > 70% 时达到最大值,而土丘下坡部分则对种子聚集产生负面影响。沉积物堆积率、土壤湿度、粒度分布、pH 值、有机质碳和硬度与研究区土壤种子库密度和多样性显著相关。在 0 < α ≤ 26.8% 的斜坡上,土壤种子库与地上植被的物种相似系数以树冠间表面最高。随着坡度的增加,土丘上坡部分的物种相似系数呈上升趋势,而土丘下坡部分则相反。对于α > 70%的斜坡,土丘的上坡部分不仅土壤种子库中的物种更多,而且地上植被中的物种也比土丘的下坡部分和树冠间表面多。对于α> 46.6%的斜坡,土丘(尤其是土丘的上坡部分)显示出种子群功能,这与改善土壤环境条件和减少微生境压力有关;因此,植物生长土丘或微地形区可用于促进半干旱侵蚀地区的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Environmental Science
Frontiers in Environmental Science Environmental Science-General Environmental Science
CiteScore
4.50
自引率
8.70%
发文量
2276
审稿时长
12 weeks
期刊介绍: Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions. Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.
期刊最新文献
Spatial distribution of available phosphorus in surface road and trackway surface materials on a sheep farm in Ireland Heavy metal changes related to land use changes in a karst area: a case study in Changshun, Guizhou Province, China Long-term trends in water transparency of Tibetan Plateau lakes and the response to extreme climate events Carbon neutralization frontier tracking Occurrence, sustainable treatment technologies, potential sources, and future prospects of emerging pollutants in aquatic environments: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1