Predict metal-binding proteins and structures through integration of evolutionary-scale and physics-based modeling

Xin Dai, Max Henderson, Shinjae Yoo, Qun Liu
{"title":"Predict metal-binding proteins and structures through integration of evolutionary-scale and physics-based modeling","authors":"Xin Dai, Max Henderson, Shinjae Yoo, Qun Liu","doi":"10.1101/2024.08.09.607368","DOIUrl":null,"url":null,"abstract":"Metals are essential elements in all living organisms, binding to approximately 50% of proteins. They serve to stabilize proteins, catalyze reactions, regulate activities, and fulfill various physiological and pathological functions. While there have been many advancements in determining the structures of protein-metal complexes, numerous metal-binding proteins still need to be identified through computational methods and validated through experiments. To address this need, we have developed the ESMBind-based workflow, which combines evolutionary scale modeling (ESM) for metal-binding prediction and physics-based protein-metal modeling. Our approach utilizes the ESM-2 and ESM-IF models to predict metal-binding probability at the residue level. In addition, we have designed a metal-placement method and energy minimization technique to generate detailed 3D structures of protein-metal complexes. Our workflow outperforms other models in terms of residue and 3D-level predictions. To demonstrate its effectiveness, we applied the workflow to 142 uncharacterized fungal pathogen proteins and predicted metal-binding proteins involved in fungal infection and virulence.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metals are essential elements in all living organisms, binding to approximately 50% of proteins. They serve to stabilize proteins, catalyze reactions, regulate activities, and fulfill various physiological and pathological functions. While there have been many advancements in determining the structures of protein-metal complexes, numerous metal-binding proteins still need to be identified through computational methods and validated through experiments. To address this need, we have developed the ESMBind-based workflow, which combines evolutionary scale modeling (ESM) for metal-binding prediction and physics-based protein-metal modeling. Our approach utilizes the ESM-2 and ESM-IF models to predict metal-binding probability at the residue level. In addition, we have designed a metal-placement method and energy minimization technique to generate detailed 3D structures of protein-metal complexes. Our workflow outperforms other models in terms of residue and 3D-level predictions. To demonstrate its effectiveness, we applied the workflow to 142 uncharacterized fungal pathogen proteins and predicted metal-binding proteins involved in fungal infection and virulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合进化尺度建模和物理建模预测金属结合蛋白和结构
金属是所有生物体内不可或缺的元素,与大约 50% 的蛋白质结合。它们起到稳定蛋白质、催化反应、调节活动以及实现各种生理和病理功能的作用。虽然在确定蛋白质-金属复合物结构方面取得了许多进展,但仍有许多金属结合蛋白需要通过计算方法来鉴定,并通过实验来验证。为了满足这一需求,我们开发了基于 ESMBind 的工作流程,该流程结合了用于金属结合预测的进化尺度建模(ESM)和基于物理的蛋白质-金属建模。我们的方法利用 ESM-2 和 ESM-IF 模型预测残基水平的金属结合概率。此外,我们还设计了一种金属置放方法和能量最小化技术,以生成蛋白质-金属复合物的详细三维结构。在残基和三维水平预测方面,我们的工作流程优于其他模型。为了证明其有效性,我们将该工作流程应用于 142 个未表征的真菌病原体蛋白,并预测了涉及真菌感染和毒力的金属结合蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECSFinder: Optimized prediction of evolutionarily conserved RNA secondary structures from genome sequences GeneSpectra: a method for context-aware comparison of cell type gene expression across species A Bioinformatician, Computer Scientist, and Geneticist lead bioinformatic tool development - which one is better? Interpretable high-resolution dimension reduction of spatial transcriptomics data by DeepFuseNMF Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of P. brasiliense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1