Bayesian Estimation of Allele-Specific Expression in the Presence of Phasing Uncertainty

Xue Zou, Zachary W. Gomez, Timothy E. Reddy, Andrew S. Allen, William H. Majoros
{"title":"Bayesian Estimation of Allele-Specific Expression in the Presence of Phasing Uncertainty","authors":"Xue Zou, Zachary W. Gomez, Timothy E. Reddy, Andrew S. Allen, William H. Majoros","doi":"10.1101/2024.08.09.607371","DOIUrl":null,"url":null,"abstract":"Motivation: Allele specific expression (ASE) analyses aim to detect imbalanced expression of maternal versus paternal copies of an autosomal gene. Such allelic imbalance can result from a variety of cis-acting causes, including disruptive mutations within one copy of a gene that impact the stability of transcripts, as well as regulatory variants outside the gene that impact transcription initiation. Current methods for ASE estimation suffer from a number of shortcomings, such as relying on only one variant within a gene, assuming perfect phasing information across multiple variants within a gene, or failing to account for alignment biases and possible genotyping errors. Results: We developed BEASTIE, a Bayesian hierarchical model designed for precise ASE quantification at the gene level, based on given genotypes and RNA-seq data. BEASTIE addresses the complexities of allelic mapping bias, genotyping error, and phasing errors by incorporating empirical phasing error rates derived from Genome-in-a-Bottle individual NA12878. BEASTIE surpasses existing methods in accuracy, especially in scenarios with high phasing errors. This improvement is critical for identifying rare genetic variants often obscured by such errors. Through rigorous validation on simulated data and application to real data from the 1000 Genomes Project, we establish the robustness of BEASTIE. These findings underscore the value of BEASTIE in revealing patterns of ASE across gene sets and pathways.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Allele specific expression (ASE) analyses aim to detect imbalanced expression of maternal versus paternal copies of an autosomal gene. Such allelic imbalance can result from a variety of cis-acting causes, including disruptive mutations within one copy of a gene that impact the stability of transcripts, as well as regulatory variants outside the gene that impact transcription initiation. Current methods for ASE estimation suffer from a number of shortcomings, such as relying on only one variant within a gene, assuming perfect phasing information across multiple variants within a gene, or failing to account for alignment biases and possible genotyping errors. Results: We developed BEASTIE, a Bayesian hierarchical model designed for precise ASE quantification at the gene level, based on given genotypes and RNA-seq data. BEASTIE addresses the complexities of allelic mapping bias, genotyping error, and phasing errors by incorporating empirical phasing error rates derived from Genome-in-a-Bottle individual NA12878. BEASTIE surpasses existing methods in accuracy, especially in scenarios with high phasing errors. This improvement is critical for identifying rare genetic variants often obscured by such errors. Through rigorous validation on simulated data and application to real data from the 1000 Genomes Project, we establish the robustness of BEASTIE. These findings underscore the value of BEASTIE in revealing patterns of ASE across gene sets and pathways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在相位不确定的情况下对等位基因特异性表达的贝叶斯估计
动机等位基因特异性表达(ASE)分析旨在检测常染色体基因母本与父本的不平衡表达。这种等位基因不平衡可由多种顺式作用原因导致,包括影响转录本稳定性的基因拷贝内的破坏性突变,以及影响转录起始的基因外调控变异。目前的 ASE 估算方法有很多不足之处,例如只依赖于一个基因内的一个变体,假设一个基因内多个变体的相位信息是完美的,或者没有考虑到比对偏差和可能的基因分型错误。结果:我们开发了贝叶斯分层模型 BEASTIE,该模型旨在根据给定的基因型和 RNA-seq 数据,在基因水平上精确量化 ASE。BEASTIE 结合了从 Genome-in-a-Bottle 个体 NA12878 中得出的经验分期误差率,解决了等位基因映射偏差、基因分型误差和分期误差等复杂问题。BEASTIE 的准确性超过了现有方法,尤其是在相位误差较大的情况下。这种改进对于识别经常被这种误差所掩盖的罕见遗传变异至关重要。通过对模拟数据的严格验证以及对来自 1000 基因组计划的真实数据的应用,我们确定了 BEASTIE 的稳健性。这些发现强调了 BEASTIE 在揭示跨基因组和通路的 ASE 模式方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECSFinder: Optimized prediction of evolutionarily conserved RNA secondary structures from genome sequences GeneSpectra: a method for context-aware comparison of cell type gene expression across species A Bioinformatician, Computer Scientist, and Geneticist lead bioinformatic tool development - which one is better? Interpretable high-resolution dimension reduction of spatial transcriptomics data by DeepFuseNMF Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of P. brasiliense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1