Effect of Glycero-(9,10-trioxolane)-trialeate Ozonide on Structure and Mechanical Properties of Ultrathin Polylactide Fibers Produced by Electrospinning
A. A. Olkhov, O. V. Alekseeva, M. L. Konstantinova, V. V. Podmastaryev, E. E. Mastalygina, Yu. N. Zernova, A. L. Iordanskii
{"title":"Effect of Glycero-(9,10-trioxolane)-trialeate Ozonide on Structure and Mechanical Properties of Ultrathin Polylactide Fibers Produced by Electrospinning","authors":"A. A. Olkhov, O. V. Alekseeva, M. L. Konstantinova, V. V. Podmastaryev, E. E. Mastalygina, Yu. N. Zernova, A. L. Iordanskii","doi":"10.1134/S2075113324700552","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Nonwoven fibrous materials based on polylactide (PLA) and ozonide of oleic acid triglyceride (glycero-(9,10-trioxolane)-trialeate) in a range of concentrations of 1–5 wt % intended for hygienic and medical devices are obtained by electrospinning. The introduction of ozonide leads to plasticization of PLA, which manifests itself in the cleavage of the primary jet of the forming solution and appearance of ultrathin nanofibers; here, the porosity and relative elongation at break increase. The optimum weight fraction of ozonide introduced into PLA is determined to be 3 wt %.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"1023 - 1030"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—Nonwoven fibrous materials based on polylactide (PLA) and ozonide of oleic acid triglyceride (glycero-(9,10-trioxolane)-trialeate) in a range of concentrations of 1–5 wt % intended for hygienic and medical devices are obtained by electrospinning. The introduction of ozonide leads to plasticization of PLA, which manifests itself in the cleavage of the primary jet of the forming solution and appearance of ultrathin nanofibers; here, the porosity and relative elongation at break increase. The optimum weight fraction of ozonide introduced into PLA is determined to be 3 wt %.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.