V. P. Kulevich, V. F. Kosarev, S. V. Klinkov, V. S. Shikalov
{"title":"Study of Structure and Phase Composition of Ni + B4C Composite Coatings Produced by Cold Gas-Dynamic Spraying","authors":"V. P. Kulevich, V. F. Kosarev, S. V. Klinkov, V. S. Shikalov","doi":"10.1134/S2075113324700631","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The effect of thermal treatment on the microstructure, phase composition, and microhardness of Ni + B<sub>4</sub>C composite coatings is studied. The coatings are deposited onto the surface of an austenitic steel by cold gas-dynamic spraying. The initial coating is shown to be a nickel matrix containing distributed B<sub>4</sub>C particles. Thermal treatment causes diffusion processes in the coating, which results in the formation of Ni<sub>3</sub>B and Ni<sub>2</sub>B compounds. The average microhardness of the initial coating is 3.4 GPa, and heat treatment results in an increase in the coating microhardness due to the formation of hard nickel borides.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"1084 - 1090"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—The effect of thermal treatment on the microstructure, phase composition, and microhardness of Ni + B4C composite coatings is studied. The coatings are deposited onto the surface of an austenitic steel by cold gas-dynamic spraying. The initial coating is shown to be a nickel matrix containing distributed B4C particles. Thermal treatment causes diffusion processes in the coating, which results in the formation of Ni3B and Ni2B compounds. The average microhardness of the initial coating is 3.4 GPa, and heat treatment results in an increase in the coating microhardness due to the formation of hard nickel borides.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.