Surface potentials of conductors in electrolyte solutions

Olga I. Vinogradova, Elena F. Silkina, Evgeny S. Asmolov
{"title":"Surface potentials of conductors in electrolyte solutions","authors":"Olga I. Vinogradova, Elena F. Silkina, Evgeny S. Asmolov","doi":"arxiv-2408.04434","DOIUrl":null,"url":null,"abstract":"When we place conducting bodies in electrolyte solutions, their surface\npotential $\\Phi_s$ appears to be much smaller in magnitude than the intrinsic\none $\\Phi_0$ and normally does not obey the classical electrostatic boundary\ncondition of a constant surface potential expected for conductors. In this\npaper, we demonstrate that an explanation of these observations can be obtained\nby postulating that diffuse ions condense at the \"wall\" due to a reduced\npermittivity of a solvent. For small values of $\\Phi_0$ the surface potential responds linearly. On\nincreasing $\\Phi_0$ further $\\Phi_s$ augments nonlinearly and then saturates to\na constant value. Analytical approximations for $\\Phi_s$ derived for these\nthree distinct modes show that it always adjusts to salt concentration, which\nis equivalent to a violation of the constant potential condition. The latter\nwould be appropriate for highly dilute solutions, but only if $\\Phi_0$ is\nsmall. Surprisingly, when the plateau with high $\\Phi_s$ is reached, the\nconductor surface switches to a constant charge density condition normally\nexpected for insulators. Our results are directly relevant for conducting\nelectrodes, mercury drops, colloidal metallic particles and more.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When we place conducting bodies in electrolyte solutions, their surface potential $\Phi_s$ appears to be much smaller in magnitude than the intrinsic one $\Phi_0$ and normally does not obey the classical electrostatic boundary condition of a constant surface potential expected for conductors. In this paper, we demonstrate that an explanation of these observations can be obtained by postulating that diffuse ions condense at the "wall" due to a reduced permittivity of a solvent. For small values of $\Phi_0$ the surface potential responds linearly. On increasing $\Phi_0$ further $\Phi_s$ augments nonlinearly and then saturates to a constant value. Analytical approximations for $\Phi_s$ derived for these three distinct modes show that it always adjusts to salt concentration, which is equivalent to a violation of the constant potential condition. The latter would be appropriate for highly dilute solutions, but only if $\Phi_0$ is small. Surprisingly, when the plateau with high $\Phi_s$ is reached, the conductor surface switches to a constant charge density condition normally expected for insulators. Our results are directly relevant for conducting electrodes, mercury drops, colloidal metallic particles and more.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电解质溶液中导体的表面电位
当我们把导电体放置在电解质溶液中时,它们的表面电势 $\Phi_s$ 似乎在量级上远远小于本征离子 $\Phi_0$ ,并且通常不服从导体预期的恒定表面电势的经典静电边界条件。在本文中,我们证明可以通过假设扩散离子在 "壁 "处凝结是由于溶剂的介电常数降低而得到这些观察结果的解释。对于较小的 $\Phi_0$ 值,表面电势呈线性响应。当 $\Phi_0$ 进一步增大时,$\Phi_s$ 非线性地增大,然后饱和到一个恒定值。针对这三种不同模式得出的 $\Phi_s$ 的分析近似值表明,它总是随盐浓度而调整,这相当于违反了恒定电势条件。后者适用于高稀释溶液,但前提是 $\Phi_0$ 较小。令人惊讶的是,当达到高 $\Phi_s$ 的高原时,导体表面会切换到绝缘体通常预期的恒电荷密度条件。我们的结果与导电电极、汞滴、胶体金属颗粒等直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-cycling and double-quantum two-dimensional electronic spectroscopy using a common-path birefringent interferometer Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory Thermodynamics of mixtures with strongly negative deviations from Raoult's law. XV. Permittivities and refractive indices for 1-alkanol + n-hexylamine systems at (293.15-303.15) K. Application of the Kirkwood-Fröhlich model Mutual neutralization of C$_{60}^+$ and C$_{60}^-$ ions: Excitation energies and state-selective rate coefficients All-in-one foundational models learning across quantum chemical levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1