{"title":"Optimized Digital Simulation Methodology for System Validation Using Real-Time Hardware-in-Loop Simulation Platform","authors":"Rajesh S. Karvande, Madhavi Tatineni","doi":"10.1109/maes.2024.3412034","DOIUrl":null,"url":null,"abstract":"Validation of onboard software is an essential and mandatory step before real launch in the aerospace and defense industry. This validation platform is popularly known as hardware-in-loop (HIL) simulation. It evaluates the real-time performance of the embedded system software and this is the tool to resolve the problems related to design, subsystem integration, and real-time execution by creating a modeling and simulation plant simulation platform. There are different configurations of HILS to validate every avionics subsystem like onboard computers, actuators, sensors, etc. In this article, development of an HIL simulation setup for a newly adopted fully digital controller for avionics configuration is discussed. This article looks at the development of a new configuration that is based on a fully digital feedback signal at a faster rate as required by the plant model so that the subsystem can be tested efficiently without causing any undue delay and oscillation in HIL methodology. The general methodology to test the actuator is to send a command to this system and take position feedback to the plant model with continuous analog signal for faster execution of the 6Dof algorithm. However, in the newly developed method discussed in this article; the plant model is configured using discrete digital signals instead of continuous signal feedback from the subsystem. The system approach for validation of this system, different methodologies as well as the synchronization and elimination of delay in simulation computer is elaborated.","PeriodicalId":51066,"journal":{"name":"IEEE Aerospace and Electronic Systems Magazine","volume":"43 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Aerospace and Electronic Systems Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/maes.2024.3412034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Validation of onboard software is an essential and mandatory step before real launch in the aerospace and defense industry. This validation platform is popularly known as hardware-in-loop (HIL) simulation. It evaluates the real-time performance of the embedded system software and this is the tool to resolve the problems related to design, subsystem integration, and real-time execution by creating a modeling and simulation plant simulation platform. There are different configurations of HILS to validate every avionics subsystem like onboard computers, actuators, sensors, etc. In this article, development of an HIL simulation setup for a newly adopted fully digital controller for avionics configuration is discussed. This article looks at the development of a new configuration that is based on a fully digital feedback signal at a faster rate as required by the plant model so that the subsystem can be tested efficiently without causing any undue delay and oscillation in HIL methodology. The general methodology to test the actuator is to send a command to this system and take position feedback to the plant model with continuous analog signal for faster execution of the 6Dof algorithm. However, in the newly developed method discussed in this article; the plant model is configured using discrete digital signals instead of continuous signal feedback from the subsystem. The system approach for validation of this system, different methodologies as well as the synchronization and elimination of delay in simulation computer is elaborated.
期刊介绍:
IEEE Aerospace and Electronic Systems Magazine is a monthly magazine that publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments as well as news and information of interest to IEEE Aerospace and Electronic Systems Society members. The boundaries of acceptable subject matter has been intentionally left flexible so that the Magazine can follow the research activities, technology applications and future trends to better meet the needs of the members of the IEEE Aerospace and Electronic Systems Society. IEEE Aerospace and Electronic Systems Magazine articles apprise readers of new developments, new applications of cornerstone technology, and news of society members, meetings, and related items.