Network and interaction models for data with hierarchical granularity via fragmentation and coagulation

Lancelot F. James, Juho Lee, Nathan Ross
{"title":"Network and interaction models for data with hierarchical granularity via fragmentation and coagulation","authors":"Lancelot F. James, Juho Lee, Nathan Ross","doi":"arxiv-2408.04866","DOIUrl":null,"url":null,"abstract":"We introduce a nested family of Bayesian nonparametric models for network and\ninteraction data with a hierarchical granularity structure that naturally\narises through finer and coarser population labelings. In the case of network\ndata, the structure is easily visualized by merging and shattering vertices,\nwhile respecting the edge structure. We further develop Bayesian inference\nprocedures for the model family, and apply them to synthetic and real data. The\nfamily provides a connection of practical and theoretical interest between the\nHollywood model of Crane and Dempsey, and the generalized-gamma graphex model\nof Caron and Fox. A key ingredient for the construction of the family is\nfragmentation and coagulation duality for integer partitions, and for this we\ndevelop novel duality relations that generalize those of Pitman and Dong,\nGoldschmidt and Martin. The duality is also crucially used in our inferential\nprocedures.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a nested family of Bayesian nonparametric models for network and interaction data with a hierarchical granularity structure that naturally arises through finer and coarser population labelings. In the case of network data, the structure is easily visualized by merging and shattering vertices, while respecting the edge structure. We further develop Bayesian inference procedures for the model family, and apply them to synthetic and real data. The family provides a connection of practical and theoretical interest between the Hollywood model of Crane and Dempsey, and the generalized-gamma graphex model of Caron and Fox. A key ingredient for the construction of the family is fragmentation and coagulation duality for integer partitions, and for this we develop novel duality relations that generalize those of Pitman and Dong, Goldschmidt and Martin. The duality is also crucially used in our inferential procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分割和凝结实现分层粒度数据的网络和交互模型
我们为网络和交互数据引入了一个嵌套的贝叶斯非参数模型系列,该模型具有分层粒度结构,通过更细和更粗的群体标签自然形成。就网络数据而言,在尊重边结构的前提下,通过合并和破碎顶点,可以很容易地将结构可视化。我们进一步开发了模型族的贝叶斯推断程序,并将其应用于合成数据和真实数据。该模型族为 Crane 和 Dempsey 的好莱坞模型以及 Caron 和 Fox 的广义伽马石墨烯模型提供了实用和理论上的联系。构建这个族的一个关键要素是整数分割的破碎和凝固对偶性,为此我们发展了新的对偶关系,概括了皮特曼和东、戈尔德施密特和马丁的对偶关系。这种对偶性在我们的推论过程中也得到了重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1