Mechanism and structure–activity relationship of H2 and CO2 activation at the ZnO/Cu catalyst interface†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-09-16 DOI:10.1039/d4cy00604f
Xin Xin , Peng Gao , Shenggang Li
{"title":"Mechanism and structure–activity relationship of H2 and CO2 activation at the ZnO/Cu catalyst interface†","authors":"Xin Xin ,&nbsp;Peng Gao ,&nbsp;Shenggang Li","doi":"10.1039/d4cy00604f","DOIUrl":null,"url":null,"abstract":"<div><div>Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> catalysts are the most well-known heterogeneous catalysts for the hydrogenation of CO and CO<sub>2</sub> into methanol. Herein, density functional theory calculations were performed to investigate the mechanism of H<sub>2</sub> activation and the effects of hydrogen spillover on CO<sub>2</sub> adsorption and activation at the interfacial site of the ZnO/Cu model catalyst, which was simulated by loading ZnO ribbons of different sizes on the Cu(111), Cu(100), and Cu(211) surfaces. The ZnO/Cu interface is found to facilitate the formation of H adsorbates from the dissociation of H<sub>2</sub> molecules, which promotes the facile formation of oxygen vacancy (V<sub>O</sub>) sites in the ZnO component due to its reducibility and the hydrogen spillover effect. The resulting interfacial structure of the ZnO/Cu model catalyst can contain perfect, hydroxylated, and oxygen-vacancy-present ZnO sites, which may act as the adsorption and activation sites for CO<sub>2</sub>. Further calculations show that molecular CO<sub>2</sub> adsorbed at the V<sub>O</sub> site <figure><img></figure> can be efficiently activated by direct dissociation or hydrogenation to the HCOO* species. In addition, the smaller ZnO structure and less exposure of the Cu(211) facet facilitate hydrogen spillover and the formation of the interfacial V<sub>O</sub> site. This study provides important insights into the structure–activity relationship for the active sites of the ZnO/Cu model catalyst and the mechanisms of CO<sub>2</sub> activation and hydrogenation.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5439-5449"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00604f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324004490","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu/ZnO/Al2O3 catalysts are the most well-known heterogeneous catalysts for the hydrogenation of CO and CO2 into methanol. Herein, density functional theory calculations were performed to investigate the mechanism of H2 activation and the effects of hydrogen spillover on CO2 adsorption and activation at the interfacial site of the ZnO/Cu model catalyst, which was simulated by loading ZnO ribbons of different sizes on the Cu(111), Cu(100), and Cu(211) surfaces. The ZnO/Cu interface is found to facilitate the formation of H adsorbates from the dissociation of H2 molecules, which promotes the facile formation of oxygen vacancy (VO) sites in the ZnO component due to its reducibility and the hydrogen spillover effect. The resulting interfacial structure of the ZnO/Cu model catalyst can contain perfect, hydroxylated, and oxygen-vacancy-present ZnO sites, which may act as the adsorption and activation sites for CO2. Further calculations show that molecular CO2 adsorbed at the VO site
can be efficiently activated by direct dissociation or hydrogenation to the HCOO* species. In addition, the smaller ZnO structure and less exposure of the Cu(211) facet facilitate hydrogen spillover and the formation of the interfacial VO site. This study provides important insights into the structure–activity relationship for the active sites of the ZnO/Cu model catalyst and the mechanisms of CO2 activation and hydrogenation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌/铜催化剂界面活化 H2 和 CO2 的机理和结构-活性关系
Cu/ZnO/Al2O3 催化剂是最著名的将 CO 和 CO2 加氢转化为甲醇的异相催化剂。本文通过在 Cu(111)、Cu(100)和 Cu(211)表面装载不同尺寸的 ZnO 带,对 ZnO/Cu 模型催化剂的界面部位进行了密度泛函理论计算,以研究 H2 活化机理以及氢溢出对 CO2 吸附和活化的影响。研究发现 ZnO/Cu 界面有利于 H2 分子解离形成 H 吸附物,由于 ZnO 的还原性和氢溢出效应,促进了 ZnO 成分中氧空位 (VO) 的形成。由此产生的 ZnO/Cu 模型催化剂界面结构可包含完美的、羟基化的和存在氧空位的 ZnO 位点,这些位点可作为 CO2 的吸附和活化位点。进一步的计算表明,吸附在 VO 位点上的二氧化碳分子可通过直接离解或氢化成 HCOO* 物种而被有效活化。此外,较小的氧化锌结构和较少的 Cu(211)面暴露有利于氢溢出和界面 VO 位点的形成。这项研究为了解 ZnO/Cu 模型催化剂活性位点的结构-活性关系以及二氧化碳活化和氢化机理提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Insight into the influence of Re and Cl on Ag catalysts in ethylene epoxidation. Back cover Correction: 1D Zn(ii)/2D Cu(i) halogen pyridyl coordination polymers. Band gap engineering by DFT for predicting more efficient photocatalysts in water treatment Enhancing light-driven photocatalytic reactions through solid solutions of bismuth oxyhalide/bismuth rich photocatalysts: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1