Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires

Ding Wang, Ping Wang, Shubham Mondal, Mingtao Hu, Yuanpeng Wu, Danhao Wang, Kai Sun, Zetian Mi
{"title":"Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires","authors":"Ding Wang, Ping Wang, Shubham Mondal, Mingtao Hu, Yuanpeng Wu, Danhao Wang, Kai Sun, Zetian Mi","doi":"arxiv-2408.02576","DOIUrl":null,"url":null,"abstract":"The pursuit of extreme device miniaturization and the exploration of novel\nphysical phenomena have spurred significant interest in crystallographic phase\ncontrol and ferroelectric switching in reduced dimensions. Recently, wurtzite\nferroelectrics have emerged as a new class of functional materials, offering\nintriguing piezoelectric and ferroelectric properties, CMOS compatibility, and\nseamless integration with mainstream semiconductor technology. However, the\nexploration of crystallographic phase and ferroelectric switching in reduced\ndimensions, especially in nanostructures, has remained a largely uncharted\nterritory. In this study, we present the first comprehensive investigation into\nthe crystallographic phase transition of ScAlN nanowires across the full Sc\ncompositional range. While a gradual transition from wurtzite to cubic phase\nwas observed with increasing Sc composition, we further demonstrated that a\nhighly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN\ninterface for Sc contents surpassing what is possible in conventional films,\nholding great potential to addressing the fundamental high coercive field of\nwurtzite ferroelectrics. In addition, we provide the first evidence of\nferroelectric switching in ScAlN nanowires, a result that holds significant\nimplications for future device miniaturization. Our demonstration of tunable\nferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain,\nalloy, strain, and quantum engineering of wurtzite ferroelectrics, representing\na significant stride towards the development of next-generation, miniaturized\ndevices based on wurtzite ferroelectrics.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. However, the exploration of crystallographic phase and ferroelectric switching in reduced dimensions, especially in nanostructures, has remained a largely uncharted territory. In this study, we present the first comprehensive investigation into the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrated that a highly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films, holding great potential to addressing the fundamental high coercive field of wurtzite ferroelectrics. In addition, we provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride towards the development of next-generation, miniaturized devices based on wurtzite ferroelectrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沃特兹铁电体的纳米工程:揭示 ScAlN 纳米线中的相变和铁电转换
对极端器件微型化的追求和对新物理现象的探索,激发了人们对晶体学相位控制和铁电开关的极大兴趣。最近,沃特兹铁电材料作为一类新型功能材料出现,具有诱人的压电和铁电特性、CMOS 兼容性以及与主流半导体技术的无缝集成。然而,对晶相和铁电开关在尺寸缩小后的探索,尤其是在纳米结构中的探索,在很大程度上仍是一个未知领域。在本研究中,我们首次对 ScAlN 纳米线在整个 Sccompositional 范围内的晶体学相变进行了全面研究。我们观察到,随着鳞片成分的增加,ScAlN 的晶相逐渐从钝方晶相过渡到立方晶相,同时我们进一步证明,当鳞片含量超过传统薄膜时,高度有序的钝方晶相 ScAlN 可以被限制在 ScAlN/GaN 界面,这为解决钝方晶铁电的基本高矫顽力场问题提供了巨大的潜力。此外,我们还首次证明了 ScAlN 纳米线中的电开关,这一结果对未来器件的微型化具有重要意义。我们展示的可调铁电 ScAlN 纳米线为渥兹铁电的纳米尺度、畴、合金、应变和量子工程开辟了新的可能性,标志着在开发基于渥兹铁电的下一代微型器件方面迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1