Variance-based sensitivity analysis in the presence of correlated input variables

Thomas Most
{"title":"Variance-based sensitivity analysis in the presence of correlated input variables","authors":"Thomas Most","doi":"arxiv-2408.04933","DOIUrl":null,"url":null,"abstract":"In this paper we propose an extension of the classical Sobol' estimator for\nthe estimation of variance based sensitivity indices. The approach assumes a\nlinear correlation model between the input variables which is used to decompose\nthe contribution of an input variable into a correlated and an uncorrelated\npart. This method provides sampling matrices following the original joint\nprobability distribution which are used directly to compute the model output\nwithout any assumptions or approximations of the model response function.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose an extension of the classical Sobol' estimator for the estimation of variance based sensitivity indices. The approach assumes a linear correlation model between the input variables which is used to decompose the contribution of an input variable into a correlated and an uncorrelated part. This method provides sampling matrices following the original joint probability distribution which are used directly to compute the model output without any assumptions or approximations of the model response function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在相关输入变量时基于方差的敏感性分析
在本文中,我们提出了一种对经典索博尔估计法的扩展,用于估计基于方差的灵敏度指数。该方法假定输入变量之间存在线性相关模型,用于将输入变量的贡献分解为相关和非相关部分。这种方法提供了遵循原始联合概率分布的抽样矩阵,可直接用于计算模型输出,而无需对模型响应函数进行任何假设或近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1