Contraction and Synchronization in Reservoir Systems

Adrian S. Wong, Robert S. Martin, Daniel Q. Eckhardt
{"title":"Contraction and Synchronization in Reservoir Systems","authors":"Adrian S. Wong, Robert S. Martin, Daniel Q. Eckhardt","doi":"arxiv-2408.04058","DOIUrl":null,"url":null,"abstract":"This work explores the conditions under which global contraction manifests in\nthe leaky continuous time reservoirs, thus guaranteeing Generalized\nSynchronization. Results on continuous time reservoirs make use of the\nlogarithmic norm of the connectivity matrix. Further analysis yields some\nsimple guidelines on how to better construct the connectivity matrix in these\nsystems. Additionally, we outline how the Universal Approximation Property of\ndiscrete time reservoirs is readily satisfied by virtue of the activation\nfunction being contracting, and how continuous time reservoirs may inherit a\nlimited form of universal approximation by virtue of them overlapping with\nNeural Ordinary Differential Equations. The ability of the Reservoir Computing\nframework to universally approximate topological conjugates, along with their\nfast training, make them a compelling data-driven, black-box surrogate of\ndynamical systems, and a potential mechanism for developing digital twins.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the conditions under which global contraction manifests in the leaky continuous time reservoirs, thus guaranteeing Generalized Synchronization. Results on continuous time reservoirs make use of the logarithmic norm of the connectivity matrix. Further analysis yields some simple guidelines on how to better construct the connectivity matrix in these systems. Additionally, we outline how the Universal Approximation Property of discrete time reservoirs is readily satisfied by virtue of the activation function being contracting, and how continuous time reservoirs may inherit a limited form of universal approximation by virtue of them overlapping with Neural Ordinary Differential Equations. The ability of the Reservoir Computing framework to universally approximate topological conjugates, along with their fast training, make them a compelling data-driven, black-box surrogate of dynamical systems, and a potential mechanism for developing digital twins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
储层系统的收缩与同步
这项研究探讨了在什么条件下全局收缩会在泄漏连续时间水库中表现出来,从而保证广义同步。关于连续时间水库的结果利用了连通性矩阵的对数规范。进一步的分析得出了如何在这些系统中更好地构建连通性矩阵的一些简单指南。此外,我们还概述了离散时间水库的通用逼近特性是如何通过活化函数的收缩而得到满足的,以及连续时间水库是如何通过与神经常微分方程的重叠而继承有限形式的通用逼近的。水库计算框架普遍逼近拓扑共轭物的能力,加上其快速训练,使其成为令人信服的数据驱动、动态系统的黑箱代理,以及开发数字双胞胎的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ergodic properties of infinite extension of symmetric interval exchange transformations Existence and explicit formula for a semigroup related to some network problems with unbounded edges Meromorphic functions whose action on their Julia sets is Non-Ergodic Computational Dynamical Systems Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1