Pamela Fleischmann, Lukas Haschke, Tim Löck, Dirk Nowotka
{"title":"Word-representable graphs from a word’s perspective","authors":"Pamela Fleischmann, Lukas Haschke, Tim Löck, Dirk Nowotka","doi":"10.1007/s00236-024-00462-y","DOIUrl":null,"url":null,"abstract":"<div><p>Word-representable graphs were introduced in 2008 by Kitaev and Pyatkin in the context of semigroup theory. Graphs are called word-representable if there exists a word with the graph’s nodes as letters such that the letters in the word alternate iff there is an edge between them in the graph. Until today numerous works investigated the word-representability of graphs but mostly from the graph perspective. In this work, we change the perspective to the words, i.e., we take classes of words and investigate the represented graphs. Our first subject of interest are the conjugates of words: we determine exactly which graphs are represented if we rotate the word. Afterwards, we look at <i>k</i>-local words introduced by Day et al. (FSTTCS LIPIcs, 2017) in order to gain more insights into this class of words. Here, we investigate especially which graphs are represented by 1-local words. Lastly, we prove that the language of all words representing a graph is regular. We were also able to characterise <i>k</i>-representable graphs, solving an open problem.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"61 4","pages":"383 - 400"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-024-00462-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-024-00462-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Word-representable graphs were introduced in 2008 by Kitaev and Pyatkin in the context of semigroup theory. Graphs are called word-representable if there exists a word with the graph’s nodes as letters such that the letters in the word alternate iff there is an edge between them in the graph. Until today numerous works investigated the word-representability of graphs but mostly from the graph perspective. In this work, we change the perspective to the words, i.e., we take classes of words and investigate the represented graphs. Our first subject of interest are the conjugates of words: we determine exactly which graphs are represented if we rotate the word. Afterwards, we look at k-local words introduced by Day et al. (FSTTCS LIPIcs, 2017) in order to gain more insights into this class of words. Here, we investigate especially which graphs are represented by 1-local words. Lastly, we prove that the language of all words representing a graph is regular. We were also able to characterise k-representable graphs, solving an open problem.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.