Kolmogorov-Arnold PointNet: Deep learning for prediction of fluid fields on irregular geometries

Ali Kashefi
{"title":"Kolmogorov-Arnold PointNet: Deep learning for prediction of fluid fields on irregular geometries","authors":"Ali Kashefi","doi":"arxiv-2408.02950","DOIUrl":null,"url":null,"abstract":"We present Kolmogorov-Arnold PointNet (KA-PointNet) as a novel supervised\ndeep learning framework for the prediction of incompressible steady-state fluid\nflow fields in irregular domains, where the predicted fields are a function of\nthe geometry of the domains. In KA-PointNet, we implement shared\nKolmogorov-Arnold Networks (KANs) in the segmentation branch of the PointNet\narchitecture. We utilize Jacobi polynomials to construct shared KANs. As a\nbenchmark test case, we consider incompressible laminar steady-state flow over\na cylinder, where the geometry of its cross-section varies over the data set.\nWe investigate the performance of Jacobi polynomials with different degrees as\nwell as special cases of Jacobi polynomials such as Legendre polynomials,\nChebyshev polynomials of the first and second kinds, and Gegenbauer\npolynomials, in terms of the computational cost of training and accuracy of\nprediction of the test set. Additionally, we compare the performance of\nPointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared\nMultilayer Perceptrons (MLPs). It is observed that when the number of trainable\nparameters is approximately equal, PointNet with shared KANs (i.e.,\nKA-PointNet) outperforms PointNet with shared MLPs.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present Kolmogorov-Arnold PointNet (KA-PointNet) as a novel supervised deep learning framework for the prediction of incompressible steady-state fluid flow fields in irregular domains, where the predicted fields are a function of the geometry of the domains. In KA-PointNet, we implement shared Kolmogorov-Arnold Networks (KANs) in the segmentation branch of the PointNet architecture. We utilize Jacobi polynomials to construct shared KANs. As a benchmark test case, we consider incompressible laminar steady-state flow over a cylinder, where the geometry of its cross-section varies over the data set. We investigate the performance of Jacobi polynomials with different degrees as well as special cases of Jacobi polynomials such as Legendre polynomials, Chebyshev polynomials of the first and second kinds, and Gegenbauer polynomials, in terms of the computational cost of training and accuracy of prediction of the test set. Additionally, we compare the performance of PointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared Multilayer Perceptrons (MLPs). It is observed that when the number of trainable parameters is approximately equal, PointNet with shared KANs (i.e., KA-PointNet) outperforms PointNet with shared MLPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kolmogorov-Arnold PointNet:用于预测不规则几何图形上流体场的深度学习
我们提出的 Kolmogorov-Arnold PointNet(KA-PointNet)是一种新颖的监督深度学习框架,用于预测不规则域中不可压缩的稳态流场,其中预测的流场是域的几何形状的函数。在 KA-PointNet 中,我们在 PointNet 架构的分割分支中实现了共享的科尔莫格罗夫-阿诺德网络(KAN)。我们利用雅可比多项式构建共享 KAN。我们研究了不同度数的雅可比多项式以及雅可比多项式的特例(如 Legendre 多项式、第一种和第二种切比雪夫多项式以及格根鲍尔多项式)在训练计算成本和测试集预测精度方面的性能。此外,我们还比较了共享 KAN 的 PointNet(即 KA-PointNet)和共享多层感知器(MLP)的 PointNet 的性能。我们发现,当可训练参数的数量大致相同时,共享 KAN 的 PointNet(即 KA-PointNet)优于共享 MLP 的 PointNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1