{"title":"Multi-Data Center Tie-Line Power Smoothing Method Based on Demand Response","authors":"Ting Yang;Yuxing Hou;Shaotang Cai;Jie Yu;Haibo Pen","doi":"10.1109/TCC.2024.3410377","DOIUrl":null,"url":null,"abstract":"Geographically distributed data centers (DCs) have emerged as significant energy consumers, which has led to the integration of renewable energy sources (RES) into DC power provisioning systems. However, the intermittent nature of RES and the randomness of user requests can cause significant fluctuations in DC operating power. It can be detrimental to the operation of IT equipment and lead to instability in the power grid. In this paper, aiming for tightly coupled interconnection scenarios with multi-data centers in varying regions, a multi-data center tie-line power smoothing method based on demand response is proposed. By modulating the power load of server clusters with workload scheduling, we establish a control model combined with intra-DC temporal task migration and inter-DC spatial task migration to deal with high-frequency power fluctuations. The uninterruptible power supply (UPS) battery control model is established to tackle low-frequency fluctuations. Furthermore, we design the two-stage heuristic power regulation algorithm to achieve the best practice of smoothing effect by real-time tracking of power targets after two-layer filtering. Finally, this paper performs a detailed performance simulation evaluation based on tracking data from a real DC and wind and photovoltaic (PV) new energy generation data, using four interconnected DC parks of different sizes across different regions as examples. The simulation results demonstrate that the proposed method effectively smoothing the multi-data center's tie-line power. Additionally, inter-DC temporal task migration serves as a viable solution to overcome the limitations of task migration response within a single DC, reducing the frequency of UPS battery bank charges and discharges, which in turn prolongs their service life. This approach facilitates the utilization of RES while maintaining power quality, and it also aids in reducing the escalating operation and maintenance expenses of DCs.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"983-995"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10551465/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Geographically distributed data centers (DCs) have emerged as significant energy consumers, which has led to the integration of renewable energy sources (RES) into DC power provisioning systems. However, the intermittent nature of RES and the randomness of user requests can cause significant fluctuations in DC operating power. It can be detrimental to the operation of IT equipment and lead to instability in the power grid. In this paper, aiming for tightly coupled interconnection scenarios with multi-data centers in varying regions, a multi-data center tie-line power smoothing method based on demand response is proposed. By modulating the power load of server clusters with workload scheduling, we establish a control model combined with intra-DC temporal task migration and inter-DC spatial task migration to deal with high-frequency power fluctuations. The uninterruptible power supply (UPS) battery control model is established to tackle low-frequency fluctuations. Furthermore, we design the two-stage heuristic power regulation algorithm to achieve the best practice of smoothing effect by real-time tracking of power targets after two-layer filtering. Finally, this paper performs a detailed performance simulation evaluation based on tracking data from a real DC and wind and photovoltaic (PV) new energy generation data, using four interconnected DC parks of different sizes across different regions as examples. The simulation results demonstrate that the proposed method effectively smoothing the multi-data center's tie-line power. Additionally, inter-DC temporal task migration serves as a viable solution to overcome the limitations of task migration response within a single DC, reducing the frequency of UPS battery bank charges and discharges, which in turn prolongs their service life. This approach facilitates the utilization of RES while maintaining power quality, and it also aids in reducing the escalating operation and maintenance expenses of DCs.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.