How to Securely and Efficiently Solve the Large-Scale Modular System of Linear Equations on the Cloud

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-06-03 DOI:10.1109/TCC.2024.3408240
Chengliang Tian;Jia Yu;Panpan Meng;Guoyan Zhang;Weizhong Tian;Yan Zhang
{"title":"How to Securely and Efficiently Solve the Large-Scale Modular System of Linear Equations on the Cloud","authors":"Chengliang Tian;Jia Yu;Panpan Meng;Guoyan Zhang;Weizhong Tian;Yan Zhang","doi":"10.1109/TCC.2024.3408240","DOIUrl":null,"url":null,"abstract":"Cloud-assisted computation empowers resource-constrained clients to efficiently tackle computationally intensive tasks by outsourcing them to resource-rich cloud servers. In the current era of Big Data, the widespread need to solve large-scale modular linear systems of equations (\n<inline-formula><tex-math>$\\mathcal {LMLSE}$</tex-math></inline-formula>\n) of the form \n<inline-formula><tex-math>$\\mathbf {A}\\mathbf {x}\\equiv \\mathbf {b}\\;{\\rm mod}\\;{q}$</tex-math></inline-formula>\n poses a significant challenge, particularly for lightweight devices. This paper delves into the secure outsourcing of \n<inline-formula><tex-math>$\\mathcal {LMLSE}$</tex-math></inline-formula>\n under a malicious single-server model and, to the best of our knowledge, introduces the inaugural protocol tailored to this specific context. The cornerstone of our protocol lies in the innovation of a novel matrix encryption method based on sparse unimodular matrix transformations. This novel technique bestows our protocol with several key advantages. First and foremost, it ensures robust privacy for all computation inputs, encompassing \n<inline-formula><tex-math>$\\mathbf {A},\\mathbf {b}, q$</tex-math></inline-formula>\n, and the output \n<inline-formula><tex-math>$\\mathbf {x}$</tex-math></inline-formula>\n, as validated by thorough theoretical analysis. Second, the protocol delivers optimal verifiability, enabling clients to detect cloud server misbehavior with an unparalleled probability of 1. Furthermore, it boasts high efficiency, requiring only a single interaction between the client and the cloud server, significantly reducing local-client time costs. For an \n<inline-formula><tex-math>$m$</tex-math></inline-formula>\n-by-\n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n matrix \n<inline-formula><tex-math>$\\mathbf {A}$</tex-math></inline-formula>\n, a given parameter \n<inline-formula><tex-math>$\\lambda =\\omega (\\log q)$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$\\rho =2.371552$</tex-math></inline-formula>\n, the time complexity is diminished from \n<inline-formula><tex-math>$O(\\max \\lbrace m n^{\\rho -1}, m^{\\rho -2} n^{2}\\rbrace \\cdot (\\log q)^{2})$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$O((mn+m^{2})\\lambda \\log q+mn(\\log q)^{2})$</tex-math></inline-formula>\n. The comprehensive results of our experimental performance evaluations substantiate the protocol's practical efficiency and effectiveness.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 3","pages":"913-927"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10546289/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud-assisted computation empowers resource-constrained clients to efficiently tackle computationally intensive tasks by outsourcing them to resource-rich cloud servers. In the current era of Big Data, the widespread need to solve large-scale modular linear systems of equations ( $\mathcal {LMLSE}$ ) of the form $\mathbf {A}\mathbf {x}\equiv \mathbf {b}\;{\rm mod}\;{q}$ poses a significant challenge, particularly for lightweight devices. This paper delves into the secure outsourcing of $\mathcal {LMLSE}$ under a malicious single-server model and, to the best of our knowledge, introduces the inaugural protocol tailored to this specific context. The cornerstone of our protocol lies in the innovation of a novel matrix encryption method based on sparse unimodular matrix transformations. This novel technique bestows our protocol with several key advantages. First and foremost, it ensures robust privacy for all computation inputs, encompassing $\mathbf {A},\mathbf {b}, q$ , and the output $\mathbf {x}$ , as validated by thorough theoretical analysis. Second, the protocol delivers optimal verifiability, enabling clients to detect cloud server misbehavior with an unparalleled probability of 1. Furthermore, it boasts high efficiency, requiring only a single interaction between the client and the cloud server, significantly reducing local-client time costs. For an $m$ -by- $n$ matrix $\mathbf {A}$ , a given parameter $\lambda =\omega (\log q)$ , and $\rho =2.371552$ , the time complexity is diminished from $O(\max \lbrace m n^{\rho -1}, m^{\rho -2} n^{2}\rbrace \cdot (\log q)^{2})$ to $O((mn+m^{2})\lambda \log q+mn(\log q)^{2})$ . The comprehensive results of our experimental performance evaluations substantiate the protocol's practical efficiency and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何在云上安全高效地求解大规模模块线性方程组
云辅助计算通过将计算密集型任务外包给资源丰富的云服务器,使资源受限的客户能够高效地处理这些任务。在当前的大数据时代,人们普遍需要求解形式为 $\mathbf {A}\mathbf {x}\equiv \mathbf {b}\;{\rm mod}\;{q}$ 的大规模模块线性方程组($mathcal {LMLSE}$),这带来了巨大的挑战,尤其是对轻量级设备而言。本文深入研究了恶意单服务器模型下 $\mathcal {LMLSE}$ 的安全外包问题,并且据我们所知,本文介绍了为这一特定环境量身定制的首创协议。我们协议的基石在于基于稀疏单模态矩阵变换的新型矩阵加密方法的创新。这项新技术赋予了我们的协议多项关键优势。首先,它能确保所有计算输入(包括 $\mathbf {A}、\mathbf {b}、q$)和输出 $\mathbf {x}$的稳健隐私,这一点已通过全面的理论分析得到验证。其次,该协议提供了最佳的可验证性,使客户端能够以无与伦比的1概率检测到云服务器的不当行为。此外,它还拥有高效率,客户端和云服务器之间只需进行一次交互,大大降低了本地客户端的时间成本。对于$m$-by-n$矩阵$\mathbf {A}$、给定参数$\lambda =\omega (\log q)$和$\rho =2.371552$ 时,时间复杂度从 $O(\max \lbrace m n^{rho -1}, m^{rho -2} n^{2}\rbrace \cdot (\log q)^{2})$ 下降到 $O((mn+m^{2})\lambda \log q+mn(\log q)^{2})$。实验性能评估的综合结果证明了该协议的实用效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1