Characterization of 3D printed micro-blades for cutting tissue-embedding material

Saisneha Koppaka, David Doan, Wei Cai, Wendy Gu, Sindy K. Y. Tang
{"title":"Characterization of 3D printed micro-blades for cutting tissue-embedding material","authors":"Saisneha Koppaka, David Doan, Wei Cai, Wendy Gu, Sindy K. Y. Tang","doi":"arxiv-2408.03155","DOIUrl":null,"url":null,"abstract":"Cutting soft materials on the microscale has emerging applications in\nsingle-cell studies, tissue microdissection for organoid culture, drug screens,\nand other analyses. However, the cutting process is complex and remains\nincompletely understood. Furthermore, precise control over blade geometries,\nsuch as the blade tip radius, has been difficult to achieve. In this work, we\nuse the Nanoscribe 3D printer to precisely fabricate micro-blades (i.e., blades\n<1 mm in length) and blade grid geometries. This fabrication method enables a\nsystematic study of the effect of blade geometry on the indentation cutting of\nparaffin wax, a common tissue-embedding material. First, we print straight\nmicro-blades with tip radius ranging from ~100 nm to 10 um. The micro-blades\nare mounted in a custom nanoindentation setup to measure the cutting energy\nduring indentation cutting of paraffin. Cutting energy, measured as the\ndifference in dissipated energy between the first and second loading cycles,\ndecreases as blade tip radius decreases, until ~357 nm when the cutting energy\nplateaus despite further decrease in tip radius. Second, we expand our method\nto blades printed in unconventional configurations, including parallel blade\nstructures and blades arranged in a square grid. Under the conditions tested,\nthe cutting energy scales approximately linearly with the total length of the\nblades comprising the blade structure. The experimental platform described can\nbe extended to investigate other blade geometries and guide the design of\nmicroscale cutting of soft materials.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting soft materials on the microscale has emerging applications in single-cell studies, tissue microdissection for organoid culture, drug screens, and other analyses. However, the cutting process is complex and remains incompletely understood. Furthermore, precise control over blade geometries, such as the blade tip radius, has been difficult to achieve. In this work, we use the Nanoscribe 3D printer to precisely fabricate micro-blades (i.e., blades <1 mm in length) and blade grid geometries. This fabrication method enables a systematic study of the effect of blade geometry on the indentation cutting of paraffin wax, a common tissue-embedding material. First, we print straight micro-blades with tip radius ranging from ~100 nm to 10 um. The micro-blades are mounted in a custom nanoindentation setup to measure the cutting energy during indentation cutting of paraffin. Cutting energy, measured as the difference in dissipated energy between the first and second loading cycles, decreases as blade tip radius decreases, until ~357 nm when the cutting energy plateaus despite further decrease in tip radius. Second, we expand our method to blades printed in unconventional configurations, including parallel blade structures and blades arranged in a square grid. Under the conditions tested, the cutting energy scales approximately linearly with the total length of the blades comprising the blade structure. The experimental platform described can be extended to investigate other blade geometries and guide the design of microscale cutting of soft materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于切割组织包埋材料的 3D 打印微型刀片的特性分析
在微尺度上切割软材料在单细胞研究、用于类器官培养的组织显微切割、药物筛选和其他分析中有着新兴的应用。然而,切割过程十分复杂,人们对它的了解还很不够。此外,刀片几何形状(如刀尖半径)的精确控制一直难以实现。在这项工作中,我们使用 Nanoscribe 3D 打印机精确制造微型刀片(即长度小于 1 毫米的刀片)和刀片网格几何形状。通过这种制造方法,我们可以系统地研究刀片几何形状对石蜡(一种常见的组织包埋材料)压痕切割的影响。首先,我们打印出尖端半径在 ~100 nm 到 10 um 之间的直微型刀片。将微型刀片安装在定制的纳米压痕装置中,测量石蜡压痕切割时的切割能量。切割能量是以第一和第二个加载周期之间耗散能量的差值来测量的,随着刀尖半径的减小而减小,直到 ~357 nm 时,尽管刀尖半径进一步减小,切割能量仍然下降。其次,我们将方法扩展到以非常规配置打印的刀片,包括平行刀片结构和以方形网格排列的刀片。在测试条件下,切割能量与构成刀片结构的刀片总长度大致呈线性关系。所述实验平台可扩展用于研究其他刀片几何形状,并指导软材料的微尺度切割设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1