{"title":"Polynomial similarity of pairs of matrices","authors":"Vitaliy Bondarenko, Anatoliy Petravchuk, Maryna Styopochkina","doi":"arxiv-2408.04244","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\\mathcal{M}(K)$ the\nset of all pairs of square matrices of the same size over $K.$ Pairs\n$P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\\mathcal{M}(K)$ are called similar if\n$A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$.\nDenote by $\\mathcal{N}(K)$ the subset of $\\mathcal{M}(K)$, consisting of all\npairs of commuting nilpotent matrices. A pair $P$ will be called {\\it\npolynomially equivalent} to a pair $\\overline{P}=(\\overline{A}, \\overline{B})$\nif $\\overline{A}=f(A,B), \\overline{B}=g(A ,B)$ for some polynomials $f, g\\in\nK[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\\rm det}\nJ(f, g)(0, 0)\\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials\n$f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and\n$\\widetilde{P}(\\widetilde{A}, \\widetilde{B})$ from $\\mathcal{N}(K)$ will be\ncalled {\\it polynomially similar} if there exists a pair\n$\\overline{P}(\\overline{A}, \\overline{B})$ from $\\mathcal{N}(K)$ such that $P$,\n$\\overline{P}$ are polynomially equivalent and $\\overline{P}$, $\\widetilde{P}$\nare similar. The main result of the paper: it is proved that the problem of\nclassifying pairs of matrices up to polynomial similarity is wild, i.e. it\ncontains the classical unsolvable problem of classifying pairs of matrices up\nto similarity.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\mathcal{M}(K)$ the
set of all pairs of square matrices of the same size over $K.$ Pairs
$P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\mathcal{M}(K)$ are called similar if
$A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$.
Denote by $\mathcal{N}(K)$ the subset of $\mathcal{M}(K)$, consisting of all
pairs of commuting nilpotent matrices. A pair $P$ will be called {\it
polynomially equivalent} to a pair $\overline{P}=(\overline{A}, \overline{B})$
if $\overline{A}=f(A,B), \overline{B}=g(A ,B)$ for some polynomials $f, g\in
K[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\rm det}
J(f, g)(0, 0)\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials
$f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and
$\widetilde{P}(\widetilde{A}, \widetilde{B})$ from $\mathcal{N}(K)$ will be
called {\it polynomially similar} if there exists a pair
$\overline{P}(\overline{A}, \overline{B})$ from $\mathcal{N}(K)$ such that $P$,
$\overline{P}$ are polynomially equivalent and $\overline{P}$, $\widetilde{P}$
are similar. The main result of the paper: it is proved that the problem of
classifying pairs of matrices up to polynomial similarity is wild, i.e. it
contains the classical unsolvable problem of classifying pairs of matrices up
to similarity.