Personalizing Federated Instrument Segmentation with Visual Trait Priors in Robotic Surgery

Jialang Xu, Jiacheng Wang, Lequan Yu, Danail Stoyanov, Yueming Jin, Evangelos B. Mazomenos
{"title":"Personalizing Federated Instrument Segmentation with Visual Trait Priors in Robotic Surgery","authors":"Jialang Xu, Jiacheng Wang, Lequan Yu, Danail Stoyanov, Yueming Jin, Evangelos B. Mazomenos","doi":"arxiv-2408.03208","DOIUrl":null,"url":null,"abstract":"Personalized federated learning (PFL) for surgical instrument segmentation\n(SIS) is a promising approach. It enables multiple clinical sites to\ncollaboratively train a series of models in privacy, with each model tailored\nto the individual distribution of each site. Existing PFL methods rarely\nconsider the personalization of multi-headed self-attention, and do not account\nfor appearance diversity and instrument shape similarity, both inherent in\nsurgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait\npriors for SIS, incorporating global-personalized disentanglement (GPD),\nappearance-regulation personalized enhancement (APE), and shape-similarity\nglobal enhancement (SGE), to boost SIS performance in each site. GPD represents\nthe first attempt at head-wise assignment for multi-headed self-attention\npersonalization. To preserve the unique appearance representation of each site\nand gradually leverage the inter-site difference, APE introduces appearance\nregulation and provides customized layer-wise aggregation solutions via\nhypernetworks for each site's personalized parameters. The mutual shape\ninformation of instruments is maintained and shared via SGE, which enhances the\ncross-style shape consistency on the image level and computes the\nshape-similarity contribution of each site on the prediction level for updating\nthe global parameters. PFedSIS outperforms state-of-the-art methods with +1.51%\nDice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding\ncode and models will be released at https://github.com/wzjialang/PFedSIS.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized federated learning (PFL) for surgical instrument segmentation (SIS) is a promising approach. It enables multiple clinical sites to collaboratively train a series of models in privacy, with each model tailored to the individual distribution of each site. Existing PFL methods rarely consider the personalization of multi-headed self-attention, and do not account for appearance diversity and instrument shape similarity, both inherent in surgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait priors for SIS, incorporating global-personalized disentanglement (GPD), appearance-regulation personalized enhancement (APE), and shape-similarity global enhancement (SGE), to boost SIS performance in each site. GPD represents the first attempt at head-wise assignment for multi-headed self-attention personalization. To preserve the unique appearance representation of each site and gradually leverage the inter-site difference, APE introduces appearance regulation and provides customized layer-wise aggregation solutions via hypernetworks for each site's personalized parameters. The mutual shape information of instruments is maintained and shared via SGE, which enhances the cross-style shape consistency on the image level and computes the shape-similarity contribution of each site on the prediction level for updating the global parameters. PFedSIS outperforms state-of-the-art methods with +1.51% Dice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding code and models will be released at https://github.com/wzjialang/PFedSIS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在机器人手术中利用视觉特质先验进行个性化联合器械分割
用于手术器械分割(SIS)的个性化联合学习(PFL)是一种很有前景的方法。它能让多个临床站点协作训练一系列私密模型,每个模型都根据每个站点的个体分布情况量身定制。现有的 PFL 方法很少考虑多头自我关注的个性化,也没有考虑外观多样性和器械形状相似性,而这两者都是手术场景中固有的。因此,我们提出了 PFedSIS,这是一种针对 SIS 的具有视觉特质优先权的新型 PFL 方法,它结合了全局个性化解脱(GPD)、外观调节个性化增强(APE)和形状相似性全局增强(SGE),以提高每个部位的 SIS 性能。GPD 是对多头自我注意个性化的首次尝试。为了保留每个站点的独特外观表示并逐步利用站点间的差异,APE 引入了外观调节,并通过超网络为每个站点的个性化参数提供定制的分层聚合解决方案。仪器的相互形状信息通过 SGE 得到维护和共享,SGE 增强了图像层的跨风格形状一致性,并在预测层计算每个站点的形状相似性贡献,以更新全局参数。PFedSIS 的性能优于最先进的方法,Dice 性能提高了 +1.51%,IoU 性能提高了 +2.11%,ASSD 性能提高了 -2.79%,HD95 性能提高了 -15.55% 。相应的代码和模型将在 https://github.com/wzjialang/PFedSIS 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1