{"title":"Mineral-Solubilizing Microbial Inoculums Promote Robinia Pseudoacacia L. Growth By Optimizing Rhizospheric Soil Microbial Community Structure","authors":"Zhaohui Jia, Chong Li, Shilin Ma, Xin Liu, Miaojing Meng, Xuefei Cheng, Hui Nie, Jinchi Zhang","doi":"10.1007/s42729-024-01965-w","DOIUrl":null,"url":null,"abstract":"<p>The application of mineral-solubilizing microbial inoculums is a biological strategy used for the restoration of vegetation at rock mining sites. These inoculums improve soil fertility, enhance plant growth, and accelerate soil weathering. However, their impacts on rhizospheric soil microbial communities are not well understood. This study aimed to elucidate how various mineral-solubilizing microbial inoculums affected the root systems of <i>R. pseudoacacia</i>. A pot experiment was conducted, and 32 samples were extracted from four different mineral-solubilizing microbial inoculum treatments to investigate the responses of soil bacterial and fungal communities in the rhizospheres of <i>R. pseudoacacia</i>. The results showed that the impacts of the inoculums on fungal community structures surpassed those of the bacterial communities. The relative abundance of <i>Proteobacteria</i> increased, which was strongly correlated with root nodulation. Interestingly, the inoculums significantly influenced the diversity and evenness of bacterial communities in the rhizospheric soil. Correlation analysis revealed positive correlations between <i>Proteobacteria</i>, <i>Verrucomicrobia</i>, <i>Ascomycota</i>, <i>Zoopagomycota</i>, soil enzyme activities, and plant growth. RDA analysis indicated that the relative abundance of these bacterial and fungal phyla positively influenced root nodulation. This study suggests that the application of mineral-solubilizing microbial inoculums optimizes the rhizospheric soil microbial community structure, promotes <i>R. pseudoacacia</i> root nodulation, and enhance the nitrogen fixation capacities of plants. Further, it provides a theoretical foundation for the application of mineral-solubilizing microbial inoculums for slope ecological restoration.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01965-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The application of mineral-solubilizing microbial inoculums is a biological strategy used for the restoration of vegetation at rock mining sites. These inoculums improve soil fertility, enhance plant growth, and accelerate soil weathering. However, their impacts on rhizospheric soil microbial communities are not well understood. This study aimed to elucidate how various mineral-solubilizing microbial inoculums affected the root systems of R. pseudoacacia. A pot experiment was conducted, and 32 samples were extracted from four different mineral-solubilizing microbial inoculum treatments to investigate the responses of soil bacterial and fungal communities in the rhizospheres of R. pseudoacacia. The results showed that the impacts of the inoculums on fungal community structures surpassed those of the bacterial communities. The relative abundance of Proteobacteria increased, which was strongly correlated with root nodulation. Interestingly, the inoculums significantly influenced the diversity and evenness of bacterial communities in the rhizospheric soil. Correlation analysis revealed positive correlations between Proteobacteria, Verrucomicrobia, Ascomycota, Zoopagomycota, soil enzyme activities, and plant growth. RDA analysis indicated that the relative abundance of these bacterial and fungal phyla positively influenced root nodulation. This study suggests that the application of mineral-solubilizing microbial inoculums optimizes the rhizospheric soil microbial community structure, promotes R. pseudoacacia root nodulation, and enhance the nitrogen fixation capacities of plants. Further, it provides a theoretical foundation for the application of mineral-solubilizing microbial inoculums for slope ecological restoration.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.