The Evolution of Extreme Genetic Variability in a Parasite-Resistance Complex in a Planktonic Crustacean

Suha Naser-Khdour, Fabian Scheuber, Peter D. Fields, Dieter Ebert
{"title":"The Evolution of Extreme Genetic Variability in a Parasite-Resistance Complex in a Planktonic Crustacean","authors":"Suha Naser-Khdour, Fabian Scheuber, Peter D. Fields, Dieter Ebert","doi":"10.1101/2024.08.09.607325","DOIUrl":null,"url":null,"abstract":"Genomic regions that play a role in parasite defense are often found to be highly variable, with the MHC serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as homologs. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex (PRC) in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being non-homologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the PRC and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many non-homologous hyper-divergent-haplotypes. The PRC is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The PRC region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.","PeriodicalId":501183,"journal":{"name":"bioRxiv - Evolutionary Biology","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic regions that play a role in parasite defense are often found to be highly variable, with the MHC serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as homologs. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex (PRC) in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being non-homologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the PRC and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many non-homologous hyper-divergent-haplotypes. The PRC is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The PRC region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浮游甲壳动物抗寄生虫复合物中极端遗传变异性的进化
在寄生虫防御过程中发挥作用的基因组区域通常具有高度变异性,MHC 就是一个典型的例子。单核苷酸多态性可能只占这种变异的一小部分,Indel 多态性和拷贝数变异会进一步加剧这种变异。在极端情况下,单倍型可能不再被认为是同源物。了解这种高度差异区域的进化具有挑战性,因为使用参考辅助基因组学方法无法看到最极端的变异。在这里,我们分析了甲壳动物大型水蚤的巴斯德氏菌抗性复合物(PRC),这是宿主对常见的剧毒巴斯德氏菌的一种防御复合物。以前曾描述过该区域的两个单倍型,其中部分单倍型是非同源的,而且该区域已被证明处于平衡选择之下。利用泛基因组分析和树调和方法探讨了水蚤和其他桡足类物种内部和物种之间 PRC 的进化及其特征,我们的分析表明,即使在宿主物种之间,该区域也具有显著的多样性,存在许多非同源的超差异单倍型。PRC的特点是岩藻糖基转移酶(FuT)和半乳糖基转移酶(GalT)基因的广泛复制和缺失,这些基因被认为在寄生虫防御中发挥作用。PRC 区域可追溯到 2.5 亿年前的共同祖先。古老的抗性复合体与动态、高度分化的基因组环境的独特结合,为研究此类区域在抗性多态性的进化和长期维持中的作用提供了一个令人着迷的机会。我们的研究结果不仅为水蚤属,而且可能为整个水蚤类提供了关于形成抗病性和适应性的进化力量的宝贵见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conserved Evolutionary Response to Whole Genome Duplication in Angiosperms Revealed Using High Resolution Gene Expression Profiling Adaptation to climate in the native and introduced ranges of a cosmopolitan plant Ecotype formation in the European anchovy fuelled by structural variants of different origins and genetic interactions with a southern lineage Most Beefalo cattle have no detectable bison genetic ancestry An Experimental Test of Local Adaptation in Native and Introduced Populations of an Ectomycorrhizal Fungus, Suillus luteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1