Deciphering Complexity: Machine Learning Insights into Chaotic Dynamical Systems

Lazare Osmanov
{"title":"Deciphering Complexity: Machine Learning Insights into Chaotic Dynamical Systems","authors":"Lazare Osmanov","doi":"arxiv-2408.02005","DOIUrl":null,"url":null,"abstract":"We introduce new machine-learning techniques for analyzing chaotic dynamical\nsystems. The primary objectives of the study include the development of a new\nand simple method for calculating the Lyapunov exponent using only two\ntrajectory data points unlike traditional methods that require an averaging\nprocedure, the exploration of phase transition graphs from regular periodic to\nchaotic dynamics to identify \"almost integrable\" trajectories where conserved\nquantities deviate from whole numbers, and the identification of \"integrable\nregions\" within chaotic trajectories. These methods are applied and tested on\ntwo dynamical systems: \"Two objects moving on a rod\" and the \"Henon-Heiles\"\nsystems.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce new machine-learning techniques for analyzing chaotic dynamical systems. The primary objectives of the study include the development of a new and simple method for calculating the Lyapunov exponent using only two trajectory data points unlike traditional methods that require an averaging procedure, the exploration of phase transition graphs from regular periodic to chaotic dynamics to identify "almost integrable" trajectories where conserved quantities deviate from whole numbers, and the identification of "integrable regions" within chaotic trajectories. These methods are applied and tested on two dynamical systems: "Two objects moving on a rod" and the "Henon-Heiles" systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密复杂性:机器学习对混沌动力系统的启示
我们为分析混沌动力学系统引入了新的机器学习技术。研究的主要目标包括:开发一种新的简单方法,仅使用两个轨迹数据点计算李亚普诺夫指数,而不像传统方法需要一个平均过程;探索从规则周期动力学到混沌动力学的相变图,以识别守恒量偏离整数的 "几乎可积分 "轨迹;以及识别混沌轨迹中的 "可积分区域"。这些方法在两个动力学系统中得到了应用和检验:"两个物体在一根杆上运动 "和 "Henon-Heiles "系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unifying Action Principle for Classical Mechanical Systems Crack Dynamics in Rotating, Initially Stressed Material Strips: A Mathematical Approach Effective Youngs Modulus of Two-Phase Elastic Composites by Repeated Isostrain and Isostress Constructions and Arithmetic-Geometric Mean The principle of minimum virtual work and its application in bridge engineering Observation of exceptional points in a spherical open elastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1