CURTAINs flows for flows: Constructing unobserved regions with maximum likelihood estimation

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY SciPost Physics Pub Date : 2024-08-12 DOI:10.21468/scipostphys.17.2.046
Debajyoti Sengupta, Sam Klein, John Andrew Raine, Tobias Golling
{"title":"CURTAINs flows for flows: Constructing unobserved regions with maximum likelihood estimation","authors":"Debajyoti Sengupta, Sam Klein, John Andrew Raine, Tobias Golling","doi":"10.21468/scipostphys.17.2.046","DOIUrl":null,"url":null,"abstract":"Model independent techniques for constructing background data templates using generative models have shown great promise for use in searches for new physics processes at the LHC. We introduce \\FfF, a major improvement to the CURTAINs method by training the conditional normalizing flow between two side-band regions using maximum likelihood estimation instead of an optimal transport loss. The new training objective improves the robustness and fidelity of the transformed data and is much faster and easier to train. We compare the performance against the previous approach and the current state of the art using the LHC Olympics anomaly detection dataset, where we see a significant improvement in sensitivity over the original CURTAINs method. Furthermore, CURTAINsF4F requires substantially less computational resources to cover a large number of signal regions than other fully data driven approaches. When using an efficient configuration, an order of magnitude more models can be trained in the same time required for ten signal regions, without a significant drop in performance.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"93 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.046","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Model independent techniques for constructing background data templates using generative models have shown great promise for use in searches for new physics processes at the LHC. We introduce \FfF, a major improvement to the CURTAINs method by training the conditional normalizing flow between two side-band regions using maximum likelihood estimation instead of an optimal transport loss. The new training objective improves the robustness and fidelity of the transformed data and is much faster and easier to train. We compare the performance against the previous approach and the current state of the art using the LHC Olympics anomaly detection dataset, where we see a significant improvement in sensitivity over the original CURTAINs method. Furthermore, CURTAINsF4F requires substantially less computational resources to cover a large number of signal regions than other fully data driven approaches. When using an efficient configuration, an order of magnitude more models can be trained in the same time required for ten signal regions, without a significant drop in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CURTAINs 流量换流量:用最大似然估计构建无观测区域
利用生成模型构建背景数据模板的独立模型技术在大型强子对撞机的新物理过程搜索中大有可为。我们引入了 \FfF,这是对 CURTAINs 方法的重大改进,它使用最大似然估计而不是最优传输损失来训练两个边带区域之间的条件归一化流。新的训练目标提高了转换数据的鲁棒性和保真度,而且训练速度更快、更容易。我们使用大型强子对撞机奥林匹克异常检测数据集比较了先前方法和当前技术水平的性能,发现灵敏度比原始 CURTAINs 方法有显著提高。此外,与其他完全由数据驱动的方法相比,CURTAINsF4F 覆盖大量信号区域所需的计算资源要少得多。使用高效配置时,在训练十个信号区域所需的相同时间内,可以训练更多数量级的模型,而性能不会显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
期刊最新文献
Two infinite families of facets of the holographic entropy cone Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory Flux-tunable Kitaev chain in a quantum dot array General quantum-classical dynamics as measurement based feedback Riemannian optimization of photonic quantum circuits in phase and Fock space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1