{"title":"Zonewise surrogate-based optimization of box-constrained systems","authors":"Srikar Venkataraman Srinivas, Iftekhar A. Karimi","doi":"10.1016/j.compchemeng.2024.108821","DOIUrl":null,"url":null,"abstract":"<div><p>Complex physical or numerical systems may exhibit distinct behaviors in various zones of their design spaces. We present an algorithm that uses multiple cluster-based surrogates for optimizing such box-constrained systems. It partitions the design space into multiple clusters using K-means clustering and develops a separate surrogate for each cluster. It then uses these surrogates to sample additional points in the design space whose function evaluations guide the search for a global optimum. Clustering, surrogate construction, and smart sampling are employed iteratively to add sample points until a pre-defined threshold. The best solution from these points estimates a global optimum. An extensive test bed of 52 box-constrained functions was used to evaluate and compare the algorithm's performance and computational requirements with sixteen derivative-free optimization solvers. The best version of our algorithm surpassed all sixteen solvers in optimization accuracy for a fixed number of evaluations and demanded lower computational effort than fifteen.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108821"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002394","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Complex physical or numerical systems may exhibit distinct behaviors in various zones of their design spaces. We present an algorithm that uses multiple cluster-based surrogates for optimizing such box-constrained systems. It partitions the design space into multiple clusters using K-means clustering and develops a separate surrogate for each cluster. It then uses these surrogates to sample additional points in the design space whose function evaluations guide the search for a global optimum. Clustering, surrogate construction, and smart sampling are employed iteratively to add sample points until a pre-defined threshold. The best solution from these points estimates a global optimum. An extensive test bed of 52 box-constrained functions was used to evaluate and compare the algorithm's performance and computational requirements with sixteen derivative-free optimization solvers. The best version of our algorithm surpassed all sixteen solvers in optimization accuracy for a fixed number of evaluations and demanded lower computational effort than fifteen.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.