Zonewise surrogate-based optimization of box-constrained systems

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-08-03 DOI:10.1016/j.compchemeng.2024.108821
Srikar Venkataraman Srinivas, Iftekhar A. Karimi
{"title":"Zonewise surrogate-based optimization of box-constrained systems","authors":"Srikar Venkataraman Srinivas,&nbsp;Iftekhar A. Karimi","doi":"10.1016/j.compchemeng.2024.108821","DOIUrl":null,"url":null,"abstract":"<div><p>Complex physical or numerical systems may exhibit distinct behaviors in various zones of their design spaces. We present an algorithm that uses multiple cluster-based surrogates for optimizing such box-constrained systems. It partitions the design space into multiple clusters using K-means clustering and develops a separate surrogate for each cluster. It then uses these surrogates to sample additional points in the design space whose function evaluations guide the search for a global optimum. Clustering, surrogate construction, and smart sampling are employed iteratively to add sample points until a pre-defined threshold. The best solution from these points estimates a global optimum. An extensive test bed of 52 box-constrained functions was used to evaluate and compare the algorithm's performance and computational requirements with sixteen derivative-free optimization solvers. The best version of our algorithm surpassed all sixteen solvers in optimization accuracy for a fixed number of evaluations and demanded lower computational effort than fifteen.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108821"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002394","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex physical or numerical systems may exhibit distinct behaviors in various zones of their design spaces. We present an algorithm that uses multiple cluster-based surrogates for optimizing such box-constrained systems. It partitions the design space into multiple clusters using K-means clustering and develops a separate surrogate for each cluster. It then uses these surrogates to sample additional points in the design space whose function evaluations guide the search for a global optimum. Clustering, surrogate construction, and smart sampling are employed iteratively to add sample points until a pre-defined threshold. The best solution from these points estimates a global optimum. An extensive test bed of 52 box-constrained functions was used to evaluate and compare the algorithm's performance and computational requirements with sixteen derivative-free optimization solvers. The best version of our algorithm surpassed all sixteen solvers in optimization accuracy for a fixed number of evaluations and demanded lower computational effort than fifteen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域代用的箱形受限系统优化
复杂的物理或数字系统可能会在其设计空间的不同区域表现出不同的行为。我们提出了一种算法,该算法使用多个基于聚类的代理变量来优化此类受限系统。该算法使用 K 均值聚类将设计空间划分为多个群组,并为每个群组开发一个单独的代用点。然后,它使用这些代用点对设计空间中的其他点进行采样,这些点的函数评估将引导全局最优的搜索。聚类、代理构建和智能采样被反复使用,以增加采样点,直至达到预定义的阈值。这些点中的最佳解决方案可估算出全局最优值。为了评估和比较该算法的性能以及与 16 个无导数优化求解器的计算要求,我们使用了一个包含 52 个盒式约束函数的大型测试平台。在固定评估次数的情况下,我们算法的最佳版本在优化精度上超过了所有十六种求解器,而且计算量也低于十五种求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Mass-Constrained hybrid Gaussian radial basis neural networks: Development, training, and applications to modeling nonlinear dynamic noisy chemical processes Editorial Board Integrating a multigeneration system into a biogas-fueled gas turbine power plant for CO2 emission reduction: An efficient design and exergy-economic assessment Surrogate modeling and optimization of the leaching process in a rare earth elements recovery plant Optimization models and heuristics for effective pipeline decommissioning planning in the oil and gas industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1