Predicting Hydrological Drought Conditions of Boryeong Dam Inflow Using Climate Variability in South Korea

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-07 DOI:10.1007/s12205-024-0160-2
Seonhui Noh, Micah Lourdes Felix, Seungchan Oh, Kwansue Jung
{"title":"Predicting Hydrological Drought Conditions of Boryeong Dam Inflow Using Climate Variability in South Korea","authors":"Seonhui Noh, Micah Lourdes Felix, Seungchan Oh, Kwansue Jung","doi":"10.1007/s12205-024-0160-2","DOIUrl":null,"url":null,"abstract":"<p>When a hydrological drought occurs due to a decrease in water storage, there is no choice but to supply limited water. Because this has a devastating impact on the community, it is necessary to identify causes and make predictions for emergency planning. The state of change in dam inflow can be used to confirm hydrological drought conditions using the Standardized Runoff Index (SRI), and meteorological drought and climate variability are used to identify causal relationships. Multiple Linear Regression (MLR) and Generalized Additive Model (GAM) models are developed to predict accumulated hydrological drought for 6, 12, and 24 months in the Boryeong Dam basin, and the Nash-Sutcliffe model efficiency coefficient (NSE) exceeded 0.4, satisfying the suitability criteria. The estimation ability is highest when predicting a 12-month annual drought, and reliability can be further increased by reflecting some climate fluctuations in a non-linear form. The droughts of 6 month and 24 month cumulative scales are significantly influenced by the Western Hemisphere Warm Pool (WHWP) extending from the eastern North Pacific to the North Atlantic and by the Nino 3.4 region in the tropical Pacific. Furthermore, it is anticipated that the drought conditions of the inflow volume to the Boryeong Dam will worsen with increasing sea surface temperatures in both regions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0160-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When a hydrological drought occurs due to a decrease in water storage, there is no choice but to supply limited water. Because this has a devastating impact on the community, it is necessary to identify causes and make predictions for emergency planning. The state of change in dam inflow can be used to confirm hydrological drought conditions using the Standardized Runoff Index (SRI), and meteorological drought and climate variability are used to identify causal relationships. Multiple Linear Regression (MLR) and Generalized Additive Model (GAM) models are developed to predict accumulated hydrological drought for 6, 12, and 24 months in the Boryeong Dam basin, and the Nash-Sutcliffe model efficiency coefficient (NSE) exceeded 0.4, satisfying the suitability criteria. The estimation ability is highest when predicting a 12-month annual drought, and reliability can be further increased by reflecting some climate fluctuations in a non-linear form. The droughts of 6 month and 24 month cumulative scales are significantly influenced by the Western Hemisphere Warm Pool (WHWP) extending from the eastern North Pacific to the North Atlantic and by the Nino 3.4 region in the tropical Pacific. Furthermore, it is anticipated that the drought conditions of the inflow volume to the Boryeong Dam will worsen with increasing sea surface temperatures in both regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用气候变异性预测韩国宝岭大坝下泄流量的水文干旱状况
当蓄水量减少导致水文干旱时,别无选择,只能有限供水。由于这会对社区造成破坏性影响,因此有必要查明原因并进行预测,以便制定应急计划。可利用标准化径流指数 (SRI) 来确认水文干旱状况,并利用气象干旱和气候多变性来确定因果关系。建立了多元线性回归 (MLR) 模型和广义加性模型 (GAM) 模型来预测宝岭坝流域 6、12 和 24 个月的累积水文干旱,纳什-苏特克利夫模型效率系数 (NSE) 超过 0.4,满足适宜性标准。在预测 12 个月的年度干旱时,估算能力最高,通过以非线性形式反映某些气候波动,可靠性可进一步提高。6 个月和 24 个月累积尺度的干旱受到从北太平洋东部延伸到北大西洋的西半球暖池(WHWP)和热带太平洋尼诺 3.4 区域的显著影响。此外,随着这两个区域海面温度的上升,预计宝岭大坝入流水量的干旱状况将进一步恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1